STEAMFITTER/PIPEFITTER

Based on the Atlantic Apprenticeship Curriculum Standard

(pg. 14 for Program Structure)

Date: 2017
Version #1.0
Nova Scotia Apprenticeship Curriculum Standard

Steamfitter-Pipefitter
Preface

This Atlantic Apprenticeship Curriculum Standard is intended to assist instructional staff in the design and delivery of technical, in-class training in support of the Steamfitter-Pipefitter program.

This document contains all the technical training elements required to complete the Steamfitter-Pipefitter apprenticeship program and has been developed based on the 2015 Red Seal Occupational Standard (RSOS) and the 2010 Interprovincial Program Guide (IPG). The RSOS and IPG can be found on the Red Seal website (www.red-seal.ca).

Implementation of this AACS for Apprenticeship training is outlined in the following table.

<table>
<thead>
<tr>
<th>Level</th>
<th>Implementation Effective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td>2017-2018</td>
</tr>
<tr>
<td>Level 2</td>
<td>2018-2019</td>
</tr>
<tr>
<td>Level 3</td>
<td>2019-2020</td>
</tr>
<tr>
<td>Level 4</td>
<td>2020-2021</td>
</tr>
</tbody>
</table>

** The above implementation schedule was current at time of printing. Please confirm with Apprenticeship Staff prior to commencing training.

Granting of credit or permission to challenge level examinations for pre-employment or pre-apprenticeship training for the Steamfitter-Pipefitter trade will be based on the content outlined in this standard. Training providers must contact their provincial apprenticeship authority for more information on the process and requirements for determining eligibility for credit towards an apprenticeship program. Programs which have been deemed acceptable by the jurisdictional apprenticeship authority will be identified in transfer credit matrix developed through the Atlantic Apprenticeship Harmonization Project.
Acknowledgements

The development of the Atlantic Apprenticeship Curriculum Standard (AACS) is an initiative of the Atlantic Apprenticeship Council’s Atlantic Apprenticeship Harmonization Project (AAHP) through the Atlantic Workforce Partnership and Employment and Social Development Canada.

The Atlantic Apprenticeship Council wishes to acknowledge the contributions of the following industry and instructional representatives on the Atlantic Trade Advisory Committee (ATAC) who participated in the development of this document on October 18, 2016.

Derek Steeves New Brunswick
Richard Essensa New Brunswick
John Topple Nova Scotia
Greg Pope Nova Scotia
Neil Landry Nova Scotia
Stephen Misner Nova Scotia
Andrew Nalesso Prince Edward Island
Trevor Sanderson Prince Edward Island
George Hughes Prince Edward Island
Bruce Gillingham Newfoundland and Labrador
Mark Billard Newfoundland and Labrador

Advisory committees, industry representatives, instructors and apprenticeship staff provided valuable input to the development of this document. Without their dedication to quality apprenticeship training, this document could not have been produced.
Table of Contents

Preface ... 2
Acknowledgements ... 3
User Guide ... 5
Glossary of Terms ... 7
Essential Skills Profiles ... 9
Profile Chart ... 10
Recommended Atlantic Level Structure .. 12
Nova Scotia Program Structure ... 14
2015 RSOS Sub-Task to AACS Unit Comparison ... 17

Program Content

Level 1 .. 24
Level 2 .. 61
Level 3 .. 85
Level 4 .. 115

Feedback and Revisions .. 167
Atlantic Apprenticeship Curriculum Standards (AACS) are developed based on the Red Seal Occupational Standard (RSOS) and the Interprovincial Program Guides (IPG), and extensive industry consultation. This document represents the minimum content to be delivered as part of the harmonized Atlantic program for the Steamfitter-Pipefitter trade.

The AACS’s are deliberately constructed for ease of use and flexibility of structure in order to adapt to all delivery requirements. They detail units of training, unit outcomes and objectives. They do not impose a delivery model or teaching format.

Jurisdictions and/or training providers will select and develop delivery materials and techniques that accommodate a variety of learning styles and delivery patterns. The AACS does not dictate study materials, textbooks or learning activities to be used in delivery.

The document includes a Level Structure to facilitate mobility for apprentices moving from one jurisdiction to another.

Structure

The content of the AACS is divided into units. Unit codes are used as a means of identification and are not intended to convey the order of delivery. It is at the discretion of the training provider to deliver the content in the required logical sequence of delivery within the level. Jurisdictions are free to deliver units one at a time or concurrently within a level, provided all outcomes are met.

The Learning Outcomes describe what the apprentice should know or be able to do at the end of training. Wording of the Learning Outcomes, “Demonstrate knowledge of...” acknowledges the broad spectrum of ways in which knowledge can be assessed (i.e. practical projects, multiple choice testing, presentations, etc.) by instructional staff within the training.

Summative evaluation will be through a multiple-choice Level Examination administered through the jurisdictional Apprenticeship Authority.
The 2015 Red Seal Occupational Standard (RSOS) to AACS Comparison chart outlines the relation between each RSOS sub-task and the AACS units. RSOS References have also been detailed in each unit to highlight the direct link between the unit and relevant sub-tasks in the RSOS.

In the Level Structure section, the document identifies suggested hours in order to provide an indication of the time it should take to cover the material in the unit and is intended as a guide only. Adjustments to the suggested hours for each unit may be required to account for rate of apprentice learning, statutory holidays, storm days, registration and examinations. These suggested hours detailed for each unit will represent both theory and practical training (if relevant) and for consistency will be based on a standard of 30 hours per week of training. The actual length of time required to deliver an outcome successfully will depend upon the learning activities and teaching methods used.

There are two types of objectives found in the AACS document: theoretical and practical.

The theoretical objectives represent the material that is to be covered during the technical training in order to convey the required knowledge to the apprentice.

The practical objectives represent the tasks or skills that have been deemed by the Atlantic Trade Advisory Committee as critical for the apprentices to receive exposure to while attending technical training. For example, exposure could be done through instructor demonstration or individual or group performance of the skill or task. Training providers are encouraged to use practical demonstration and opportunities for hands-on learning whenever possible. Practical objectives are not intended to replace the on-the-job training component of the apprentice’s program or to mirror or replace the logbook skills that are to be taught and evaluated in the workplace.

Detailed content for each objective has not been developed. Where detail is required for clarity, content has been provided.
Glossary of Terms

These definitions are intended as a guide to how language is used in the document.

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADJUST</td>
<td>To put in good working order; regulate; bring to a proper state or position.</td>
</tr>
<tr>
<td>APPLICATION</td>
<td>The use to which something is put and/or the circumstance in which an individual would use it.</td>
</tr>
<tr>
<td>CHARACTERISTIC</td>
<td>A feature that helps to identify, tell apart or describe recognizably; a distinguishing mark or trait.</td>
</tr>
<tr>
<td>COMPONENT</td>
<td>A part that can be separated from or attached to a system; a segment or unit.</td>
</tr>
<tr>
<td>DEFINE</td>
<td>To state the meaning of (a word, phrase, etc.).</td>
</tr>
<tr>
<td>DESCRIBE</td>
<td>To give a verbal account of; tell about in detail.</td>
</tr>
<tr>
<td>EXPLAIN</td>
<td>To make plain or clear; illustrate; rationalize.</td>
</tr>
<tr>
<td>IDENTIFY</td>
<td>To point out or name objectives or types.</td>
</tr>
<tr>
<td>INTERPRET</td>
<td>To translate information from observation, charts, tables, graphs and written material.</td>
</tr>
<tr>
<td>MAINTAIN</td>
<td>To keep in a condition of good repair or efficiency.</td>
</tr>
<tr>
<td>METHOD</td>
<td>A means or manner of doing something that has procedures attached to it.</td>
</tr>
<tr>
<td>OPERATE</td>
<td>How an object works; to control or direct the functioning of.</td>
</tr>
<tr>
<td>PROCEDURE</td>
<td>A prescribed series of steps taken to accomplish an end.</td>
</tr>
<tr>
<td>PURPOSE</td>
<td>The reason for which something exists or is done, made or used.</td>
</tr>
</tbody>
</table>
Glossary of Terms (continued)

TECHNIQUE
Within a procedure, the manner in which technical skills are applied.

TEST
v. To subject to a procedure that ascertains effectiveness, value, proper function or other quality.

n. A way of examining something to determine its characteristics or properties, or to determine whether or not it is working correctly.
Essential Skills Profiles

Through extensive research, the Government of Canada and other national and international agencies have identified and validated key essential skills for the workplace. These skills are used in nearly every job and at different levels of complexity. They provide the foundation for learning all other skills and enable people to evolve with their jobs and adapt to workplace change.

Essential Skills Profiles describe how workers in various occupations use each of the key essential skills. They include:

- a brief description of the occupation;
- examples of tasks that illustrate how each essential skill is applied; and,
- complexity ratings that indicate the level of difficulty of the example tasks.

Essential Skills profiles can be found on the Employment and Social Development Canada (ESDC) website at www.esdc.gc.ca/eng/jobs/les/profiles/index.shtml

The development and improvement of these Essential Skills is inherent throughout the apprenticeship training program as apprentices work towards achieving journeyperson status.
Profile Chart

OCCUPATIONAL SKILLS

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>STM-100</td>
<td>Safety</td>
</tr>
<tr>
<td>STM-105</td>
<td>Communication and Trade Documentation</td>
</tr>
<tr>
<td>STM-110</td>
<td>Tools and Equipment</td>
</tr>
<tr>
<td>STM-115</td>
<td>Access Equipment</td>
</tr>
<tr>
<td>STM-450</td>
<td>Job Planning</td>
</tr>
<tr>
<td>STM-125</td>
<td>Fuel Brazing and Soldering</td>
</tr>
<tr>
<td>STM-235</td>
<td>Electrical Principles</td>
</tr>
<tr>
<td>STM-135</td>
<td>Bracket, Support, Hanger, Guides and Anchor Fabrication</td>
</tr>
<tr>
<td>STM-455</td>
<td>Quality Control</td>
</tr>
<tr>
<td>STM-120</td>
<td>Introduction to Welding</td>
</tr>
</tbody>
</table>

DRAWINGS AND SPECIFICATIONS

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>STM-140</td>
<td>Drawings and Specifications I</td>
</tr>
<tr>
<td>STM-200</td>
<td>Drawings and Specifications II</td>
</tr>
<tr>
<td>STM-205</td>
<td>Template Development</td>
</tr>
</tbody>
</table>

PIPING LAYOUT AND COMMON INSTALLATION

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>STM-145</td>
<td>Copper Tube and Tubing</td>
</tr>
<tr>
<td>STM-155</td>
<td>Plastic Piping</td>
</tr>
<tr>
<td>STM-160</td>
<td>Carbon Steel Piping</td>
</tr>
<tr>
<td>STM-165</td>
<td>Stainless Steel Piping</td>
</tr>
<tr>
<td>STM-215</td>
<td>Fiberglass Piping</td>
</tr>
<tr>
<td>STM-220</td>
<td>Specialty Piping</td>
</tr>
<tr>
<td>STM-170</td>
<td>Piping Valves</td>
</tr>
<tr>
<td>STM-330</td>
<td>Cross Connection Control</td>
</tr>
<tr>
<td>STM-210</td>
<td>Piping System Component Fabrication (Spool)</td>
</tr>
<tr>
<td>STM-150</td>
<td>Pipe and Tube Bending</td>
</tr>
</tbody>
</table>

RIGGING AND HOISTING

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>STM-130</td>
<td>Rigging, Hoisting and Lifting</td>
</tr>
<tr>
<td>STM-400</td>
<td>Complex Hoisting, Lifting and Rigging</td>
</tr>
</tbody>
</table>

DRAINAGE, WASTE AND VENT SYSTEMS

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>STM-300</td>
<td>Industrial Water and Waste Systems</td>
</tr>
<tr>
<td>Profile Chart (continued)</td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td></td>
</tr>
<tr>
<td>STEAM SYSTEM INSTALLATION</td>
<td></td>
</tr>
<tr>
<td>STM-315 Low Pressure Steam Systems</td>
<td>STM-415 High Pressure Steam Systems</td>
</tr>
<tr>
<td>HEATING, COOLING AND PROCESS SYSTEM INSTALLATION</td>
<td></td>
</tr>
<tr>
<td>STM-225 Hydronic Systems</td>
<td>STM-310 Hydronic System Controls</td>
</tr>
<tr>
<td>STM-305 Heat Tracing Systems (Steam)</td>
<td></td>
</tr>
<tr>
<td>TESTING AND COMMISSIONING</td>
<td></td>
</tr>
<tr>
<td>STM-445 System Testing and Commissioning</td>
<td></td>
</tr>
<tr>
<td>SPECIALIZED SYSTEMS</td>
<td></td>
</tr>
</tbody>
</table>
Recommended Atlantic Level Structure

Level 1 - 8 Weeks

<table>
<thead>
<tr>
<th>Unit Code</th>
<th>Unit Title</th>
<th>Suggested Hours</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>STM-100</td>
<td>Safety</td>
<td>12</td>
<td>22</td>
</tr>
<tr>
<td>STM-105</td>
<td>Communication and Trade Documentation</td>
<td>6</td>
<td>25</td>
</tr>
<tr>
<td>STM-110</td>
<td>Tools and Equipment</td>
<td>24</td>
<td>27</td>
</tr>
<tr>
<td>STM-115</td>
<td>Access Equipment</td>
<td>6</td>
<td>28</td>
</tr>
<tr>
<td>STM-120</td>
<td>Introduction to Welding</td>
<td>18</td>
<td>30</td>
</tr>
<tr>
<td>STM-125</td>
<td>Fuel Brazing and Soldering</td>
<td>18</td>
<td>32</td>
</tr>
<tr>
<td>STM-130</td>
<td>Rigging, Hoisting and Lifting</td>
<td>30</td>
<td>34</td>
</tr>
<tr>
<td>STM-135</td>
<td>Bracket, Support, Hanger, Guides and Anchor Fabrication</td>
<td>12</td>
<td>37</td>
</tr>
<tr>
<td>STM-140</td>
<td>Drawings and Specifications I</td>
<td>30</td>
<td>38</td>
</tr>
<tr>
<td>STM-145</td>
<td>Copper Tube and Tubing</td>
<td>12</td>
<td>40</td>
</tr>
<tr>
<td>STM-150</td>
<td>Pipe and Tube Bending</td>
<td>12</td>
<td>43</td>
</tr>
<tr>
<td>STM-155</td>
<td>Plastic Piping</td>
<td>12</td>
<td>45</td>
</tr>
<tr>
<td>STM-160</td>
<td>Carbon Steel Piping</td>
<td>24</td>
<td>48</td>
</tr>
<tr>
<td>STM-165</td>
<td>Stainless Steel Piping</td>
<td>6</td>
<td>51</td>
</tr>
<tr>
<td>STM-170</td>
<td>Piping Valves</td>
<td>18</td>
<td>54</td>
</tr>
</tbody>
</table>

Level 2 - 6 Weeks

<table>
<thead>
<tr>
<th>Unit Code</th>
<th>Unit Title</th>
<th>Suggested Hours</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>STM-200</td>
<td>Drawings and Specifications II</td>
<td>30</td>
<td>58</td>
</tr>
<tr>
<td>STM-205</td>
<td>Template Development</td>
<td>30</td>
<td>60</td>
</tr>
<tr>
<td>STM-210</td>
<td>Piping System Component Fabrication (Spool)</td>
<td>30</td>
<td>61</td>
</tr>
<tr>
<td>STM-215</td>
<td>Fiberglass Piping</td>
<td>6</td>
<td>64</td>
</tr>
<tr>
<td>STM-220</td>
<td>Specialty Piping</td>
<td>12</td>
<td>67</td>
</tr>
<tr>
<td>STM-225</td>
<td>Hydronic Systems</td>
<td>60</td>
<td>70</td>
</tr>
<tr>
<td>STM-230</td>
<td>Heat Tracing Systems (Liquid)</td>
<td>6</td>
<td>76</td>
</tr>
<tr>
<td>STM-235</td>
<td>Electrical Principles</td>
<td>6</td>
<td>79</td>
</tr>
</tbody>
</table>
Level Structure (continued)

Level 3 - 8 Weeks

<table>
<thead>
<tr>
<th>Unit Code</th>
<th>Unit Title</th>
<th>Suggested Hours</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>STM-300</td>
<td>Industrial Water and Waste Systems</td>
<td>24</td>
<td>82</td>
</tr>
<tr>
<td>STM-305</td>
<td>Heat Tracing Systems (Steam)</td>
<td>12</td>
<td>86</td>
</tr>
<tr>
<td>STM-310</td>
<td>Hydronic System Controls</td>
<td>12</td>
<td>89</td>
</tr>
<tr>
<td>STM-315</td>
<td>Low Pressure Steam Systems</td>
<td>72</td>
<td>91</td>
</tr>
<tr>
<td>STM-320</td>
<td>Fuel Systems</td>
<td>60</td>
<td>97</td>
</tr>
<tr>
<td>STM-325</td>
<td>Medical Gas Systems</td>
<td>12</td>
<td>102</td>
</tr>
<tr>
<td>STM-330</td>
<td>Cross Connection Control</td>
<td>6</td>
<td>106</td>
</tr>
<tr>
<td>STM-335</td>
<td>Instrumentation</td>
<td>12</td>
<td>107</td>
</tr>
<tr>
<td>STM-340</td>
<td>Controlled Bolting and Tensioning</td>
<td>30</td>
<td>109</td>
</tr>
</tbody>
</table>

Level 4 - 8 Weeks

<table>
<thead>
<tr>
<th>Unit Code</th>
<th>Unit Title</th>
<th>Suggested Hours</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>STM-400</td>
<td>Complex Hoisting, Lifting and Rigging</td>
<td>24</td>
<td>112</td>
</tr>
<tr>
<td>STM-405</td>
<td>Hydraulic Systems</td>
<td>12</td>
<td>114</td>
</tr>
<tr>
<td>STM-410</td>
<td>Compressed Air and Pneumatic Systems</td>
<td>12</td>
<td>118</td>
</tr>
<tr>
<td>STM-415</td>
<td>High Pressure Steam Systems</td>
<td>60</td>
<td>123</td>
</tr>
<tr>
<td>STM-420</td>
<td>Refrigeration Systems</td>
<td>18</td>
<td>128</td>
</tr>
<tr>
<td>STM-425</td>
<td>Heat Recovery Systems</td>
<td>15</td>
<td>132</td>
</tr>
<tr>
<td>STM-430</td>
<td>Geo-Exchange and Geothermal Systems</td>
<td>12</td>
<td>137</td>
</tr>
<tr>
<td>STM-435</td>
<td>Solar Heating Systems</td>
<td>15</td>
<td>142</td>
</tr>
<tr>
<td>STM-440</td>
<td>Process Piping Systems</td>
<td>18</td>
<td>147</td>
</tr>
<tr>
<td>STM-445</td>
<td>System Testing and Commissioning</td>
<td>12</td>
<td>151</td>
</tr>
<tr>
<td>STM-450</td>
<td>Job Planning</td>
<td>6</td>
<td>155</td>
</tr>
<tr>
<td>STM-455</td>
<td>Quality Control</td>
<td>6</td>
<td>157</td>
</tr>
<tr>
<td>STM-460</td>
<td>Program Review</td>
<td>30</td>
<td>159</td>
</tr>
</tbody>
</table>
Nova Scotia Program Structure

The courses listed below are required technical training in the Nova Scotia Steamfitter-Pipefitter Apprenticeship Program.

<table>
<thead>
<tr>
<th>Nova Scotia Course No.</th>
<th>Nova Scotia Course Name</th>
<th>Nova Scotia Prerequisites</th>
<th>Atlantic Curriculum Content to Be Covered</th>
<th>Atlantic Units</th>
<th>Sugg Hrs</th>
<th>Page #</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Workplace Mentoring I (NS Specific)</td>
<td>MENT-1801</td>
<td>6</td>
<td>25</td>
</tr>
<tr>
<td>MENT-1801</td>
<td>Integrated Milestone</td>
<td>None</td>
<td>Safety</td>
<td>STM-100</td>
<td>12</td>
<td>26</td>
</tr>
<tr>
<td>STMA-1865</td>
<td>Safety</td>
<td>None</td>
<td>Access Equipment</td>
<td>STM-115</td>
<td>6</td>
<td>32</td>
</tr>
<tr>
<td>STMA-1866</td>
<td>Tools and Equipment</td>
<td>STMA-1865</td>
<td>Tools and Equipment</td>
<td>STM-110</td>
<td>24</td>
<td>31</td>
</tr>
<tr>
<td>STMA-1867</td>
<td>Drawings and Specifications 1</td>
<td>None</td>
<td>Drawings and Specifications I</td>
<td>STM-140</td>
<td>30</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Communication and Trade Documentation</td>
<td>STM-105</td>
<td>6</td>
<td>29</td>
</tr>
<tr>
<td>STMA-1868</td>
<td>Rigging and Hoisting 1</td>
<td>STMA-1865</td>
<td>Rigging, Hoisting and Lifting</td>
<td>STM-130</td>
<td>30</td>
<td>38</td>
</tr>
<tr>
<td>STMA-1869</td>
<td>Welding and Brazing</td>
<td>STMA-1865</td>
<td>Introduction to Welding</td>
<td>STM-120</td>
<td>18</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fuel Brazing and Soldering</td>
<td>STM-125</td>
<td>18</td>
<td>36</td>
</tr>
<tr>
<td>STMA-1870</td>
<td>Pipe and Tubing</td>
<td>STMA-1865 & 1866</td>
<td>Pipe and Tube Bending</td>
<td>STM-150</td>
<td>12</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bracket, Support, Hanger, Guides and Anchor Fabrication</td>
<td>STM-135</td>
<td>12</td>
<td>41</td>
</tr>
<tr>
<td>STMA-1871</td>
<td>Ferrous Piping</td>
<td>STMA-1865</td>
<td>Carbon Steel Piping</td>
<td>STM-160</td>
<td>24</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Stainless Steel Piping</td>
<td>STM-165</td>
<td>6</td>
<td>55</td>
</tr>
<tr>
<td>STMA-1872</td>
<td>Non-ferrous Piping</td>
<td>STMA-1865 & 1871</td>
<td>Copper Tube and Tubing</td>
<td>STM-145</td>
<td>12</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Plastic Piping</td>
<td>STM-155</td>
<td>12</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Piping Valves</td>
<td>STM-170</td>
<td>18</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level 2 (6 weeks)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STMA-1873</td>
<td>Drawings and Specifications 2</td>
<td>Level 1</td>
<td>Drawings and Specifications II</td>
<td>STM-200</td>
<td>30</td>
<td>62</td>
</tr>
<tr>
<td>STMA-1851</td>
<td>Pipe Template Development</td>
<td>Level 1</td>
<td>Template Development</td>
<td>STM-205</td>
<td>30</td>
<td>64</td>
</tr>
</tbody>
</table>

14
<table>
<thead>
<tr>
<th>Nova Scotia Course No.</th>
<th>Nova Scotia Course Name</th>
<th>Nova Scotia Prerequisites</th>
<th>Atlantic Curriculum Content to Be Covered</th>
<th>Atlantic Units</th>
<th>Sugg Hrs</th>
<th>Page #</th>
</tr>
</thead>
<tbody>
<tr>
<td>STMA-1852</td>
<td>Pipe Layout and Fabrication</td>
<td>Level 1</td>
<td></td>
<td>STM-210</td>
<td>30</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Piping System Component</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fabrication (Spool)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STMA-1874</td>
<td>Hydronic Systems</td>
<td>Level 1</td>
<td></td>
<td>STM 225</td>
<td>60</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hydronic Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>STM 230</td>
<td>6</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Heat Tracing Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Liquid)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STMA-1875</td>
<td>Fiberglass and Specialty Piping</td>
<td>Level 1</td>
<td></td>
<td>STM-215</td>
<td>6</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fiberglass Piping</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>STM-220</td>
<td>71</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Specialty Piping</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STMA-1849</td>
<td>Introduction to Electricity</td>
<td>Level 1</td>
<td></td>
<td>STM-235</td>
<td>6</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Electrical Principles</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Level 3 (8 weeks)

<table>
<thead>
<tr>
<th>Nova Scotia Course No.</th>
<th>Nova Scotia Course Name</th>
<th>Nova Scotia Prerequisites</th>
<th>Atlantic Curriculum Content to Be Covered</th>
<th>Atlantic Units</th>
<th>Sugg Hrs</th>
<th>Page #</th>
</tr>
</thead>
<tbody>
<tr>
<td>STMA-1844</td>
<td>Low Pressure Steam</td>
<td>Level 2</td>
<td></td>
<td>STM-305</td>
<td>12</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Heat Tracing Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Steam)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>STM-315</td>
<td>72</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Low Pressure Steam Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STMA-1853</td>
<td>Gas Piping 1 (Low Pressure)</td>
<td>Level 2</td>
<td></td>
<td>STM-320</td>
<td>30</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fuel Systems (cover Low Pressure)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STMA-1854</td>
<td>Gas Piping 2 (High Pressure)</td>
<td>Level 2</td>
<td></td>
<td>STM-320</td>
<td>30</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fuel Systems (cover high Pressure)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STMA-1878</td>
<td>Hydronic and Cross Connection Controls</td>
<td>Level 2</td>
<td></td>
<td>STM-310</td>
<td>12</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hydronic System Controls</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>STM-330</td>
<td>6</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cross Connection Control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STMA-1879</td>
<td>Controlled Bolting and Tensioning</td>
<td>Level 2</td>
<td></td>
<td>STM-340</td>
<td>30</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Controlled Bolting and Tensioning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STMA-1880</td>
<td>Instrumentation</td>
<td>Level 2</td>
<td></td>
<td>STM-335</td>
<td>12</td>
<td>111</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Instrumentation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STMA-1881</td>
<td>Medical Gas Systems</td>
<td>Level 2</td>
<td></td>
<td>STM-325</td>
<td>12</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Medical Gas Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STMA-1882</td>
<td>Industrial Water and Waste Systems</td>
<td>Level 2</td>
<td></td>
<td>STM-300</td>
<td>24</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Industrial Water and Waste Systems</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Level 4 (8 weeks)

<table>
<thead>
<tr>
<th>Nova Scotia Course No.</th>
<th>Nova Scotia Course Name</th>
<th>Nova Scotia Prerequisites</th>
<th>Atlantic Curriculum Content to Be Covered</th>
<th>Atlantic Units</th>
<th>Sugg Hrs</th>
<th>Page #</th>
</tr>
</thead>
<tbody>
<tr>
<td>MENT-1802</td>
<td>Integrated Milestone</td>
<td>Level 3</td>
<td></td>
<td>MENT-1802</td>
<td>6</td>
<td>116</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Workplace Mentoring II (NS Specific)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STMA-1856</td>
<td>High Pressure Steam</td>
<td>Level 3</td>
<td></td>
<td>STM-415</td>
<td>60</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>High Pressure Steam Sys.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>STM-425</td>
<td>15</td>
<td>137</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Heat Recovery Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STMA-1861</td>
<td>Job Planning, Commissioning and Quality Control</td>
<td>Level 3</td>
<td></td>
<td>STM-445</td>
<td>12</td>
<td>156</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>System Testing and Commissioning</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>STM-450</td>
<td>6</td>
<td>160</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Job Planning</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>STM-455</td>
<td>6</td>
<td>162</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Quality Control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nova Scotia Course No.</td>
<td>Nova Scotia Course Name</td>
<td>Nova Scotia Prerequisites</td>
<td>Atlantic Curriculum Content to Be Covered</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
<td>---------------------------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>STM-435 Solar Heating Systems 15 147</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>STM-440 Process Piping Systems 18 152</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STMA-1884</td>
<td>Hydraulics, Compressors and Refrigeration</td>
<td>Level 3</td>
<td>STM-405 Hydraulic Systems 12 119</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>STM-410 Compressed Air and Pneumatic Systems 12 123</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>STM-420 Refrigeration Systems 18 133</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STMA-1885</td>
<td>Rigging and Hoisting 2</td>
<td>Level 3</td>
<td>STM-400 Complex Hoisting, Lifting and Rigging 24 117</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STMA-1857</td>
<td>Program Review</td>
<td>Entire Program</td>
<td>STM-460 Program Review 30 164</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nova Scotia Steamfitter/Pipefitter Apprenticeship Program: All Courses are Required
2015 RSOS Sub-task to AACS Unit Comparison

<table>
<thead>
<tr>
<th>RSOS Sub-task</th>
<th>AACS Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task 1 - Performs Safety-Related Functions.</td>
<td></td>
</tr>
<tr>
<td>1.01 Maintains safe work environment.</td>
<td>STM-100 Safety</td>
</tr>
<tr>
<td>1.02 Selects, inspects and uses personal protective equipment (PPE) and safety equipment.</td>
<td>STM-100 Safety</td>
</tr>
<tr>
<td>1.03 Follows lock-out procedures.</td>
<td>STM-100 Safety</td>
</tr>
<tr>
<td>Task 2 - Uses And Maintains Tools And Equipment.</td>
<td></td>
</tr>
<tr>
<td>2.01 Uses common tools and equipment.</td>
<td>STM-110 Tools and Equipment</td>
</tr>
<tr>
<td>2.02 Uses access equipment.</td>
<td>STM-115 Access Equipment</td>
</tr>
<tr>
<td>2.03 Uses welding equipment.</td>
<td>STM-120 Introduction to Welding</td>
</tr>
<tr>
<td>2.04 Uses soldering and brazing equipment.</td>
<td>STM-125 Fuel Brazing and Soldering</td>
</tr>
<tr>
<td>2.05 Uses oxy-fuel equipment.</td>
<td>STM-125 Fuel Brazing and Soldering</td>
</tr>
<tr>
<td>2.05 Uses oxy-fuel equipment.</td>
<td>STM-210 Piping System Component Fabrication (Spool)</td>
</tr>
<tr>
<td>Task 3 - Organizes Job.</td>
<td></td>
</tr>
<tr>
<td>3.01 Plans work.</td>
<td>STM-105 Communication and Trade Documentation</td>
</tr>
<tr>
<td>3.01 Plans work.</td>
<td>STM-450 Job Planning</td>
</tr>
<tr>
<td>3.02 Generates drawings.</td>
<td>STM-140 Drawings and Specifications I</td>
</tr>
<tr>
<td>3.02 Generates drawings.</td>
<td>STM-200 Drawings and Specifications II</td>
</tr>
<tr>
<td>3.03 Interprets drawings and specifications.</td>
<td>STM-200 Drawings and Specifications II</td>
</tr>
<tr>
<td>3.04 Develops piping templates.</td>
<td>STM-205 Template Development</td>
</tr>
<tr>
<td>3.05 Performs quality control functions.</td>
<td>STM-455 Quality Control</td>
</tr>
<tr>
<td>Task 4 - Performs Fabrications.</td>
<td></td>
</tr>
<tr>
<td>4.01 Fabricates piping system components.</td>
<td>STM-145 Copper Tube and Tubing</td>
</tr>
<tr>
<td>4.01 Fabricates piping system components.</td>
<td>STM-155 Plastic Piping</td>
</tr>
<tr>
<td>4.01 Fabricates piping system components.</td>
<td>STM-160 Carbon Steel Piping</td>
</tr>
<tr>
<td>4.01 Fabricates piping system components.</td>
<td>STM-165 Stainless Steel Piping</td>
</tr>
<tr>
<td>4.02 Fabricates brackets, supports, hangers, guides and anchors.</td>
<td>STM-135 Bracket, Support, Hanger, Guides and Anchor Fabrication</td>
</tr>
<tr>
<td>4.02 Fabricates brackets, supports, hangers, guides and anchors.</td>
<td>STM-145 Copper Tube and Tubing</td>
</tr>
<tr>
<td>4.02 Fabricates brackets, supports, hangers, guides and anchors.</td>
<td>STM-155 Plastic Piping</td>
</tr>
<tr>
<td>4.02 Fabricates brackets, supports, hangers, guides and anchors.</td>
<td>STM-160 Carbon Steel Piping</td>
</tr>
<tr>
<td>4.02 Fabricates brackets, supports, hangers, guides and anchors.</td>
<td>STM-165 Stainless Steel Piping</td>
</tr>
<tr>
<td>RSOS Sub-task</td>
<td>AACS Unit</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Task 5 - Lays Out, Identifies And Installs Piping, Tubing, Fittings And Related Components.</td>
<td></td>
</tr>
<tr>
<td>5.01 Lays out, identifies and installs copper tube, fittings and related components.</td>
<td>STM-145 Copper Tube and Tubing</td>
</tr>
<tr>
<td>5.02 Lays out, identifies and installs plastic piping, tubing, fittings and related components.</td>
<td>STM-155 Plastic Piping</td>
</tr>
<tr>
<td>5.03 Lays out, identifies and installs carbon steel piping, tubing, fittings and related components.</td>
<td>STM-160 Carbon Steel Piping</td>
</tr>
<tr>
<td>5.04 Lays out, identifies and installs stainless steel piping, tubing, fittings and related components.</td>
<td>STM-165 Stainless Steel Piping</td>
</tr>
<tr>
<td>5.05 Lays out, identifies and installs fiberglass piping, fittings and related components.</td>
<td>STM-215 Fiberglass Piping</td>
</tr>
<tr>
<td>5.06 Lays out, identifies and installs specialty piping, fittings and related components.</td>
<td>STM-220 Specialty Piping</td>
</tr>
<tr>
<td>Task 6 - Installs, Maintains, Troubleshoots, Repairs And Tests Valves.</td>
<td></td>
</tr>
<tr>
<td>6.01 Installs valves.</td>
<td>STM-170 Piping Valves</td>
</tr>
<tr>
<td>6.02 Maintains, troubleshoots, repairs and tests valves.</td>
<td>STM-170 Piping Valves</td>
</tr>
<tr>
<td>Task 7 - Installs, Tests, Maintains, Troubleshoots And Repairs Heat Tracing Systems.</td>
<td></td>
</tr>
<tr>
<td>7.01 Installs steam tracing systems.</td>
<td>STM-305 Heat Tracing Systems (Steam)</td>
</tr>
<tr>
<td>7.02 Maintains, troubleshoots, repairs and tests steam tracing systems.</td>
<td>STM-305 Heat Tracing Systems (Steam)</td>
</tr>
<tr>
<td>7.03 Installs liquid-filled tracing systems.</td>
<td>STM-230 Heat Tracing Systems (Liquid)</td>
</tr>
<tr>
<td>7.04 Maintains, troubleshoots, repairs and tests liquid-filled tracing systems.</td>
<td>STM-230 Heat Tracing Systems (Liquid)</td>
</tr>
<tr>
<td>Task 8 - Performs Common Rigging, Hoisting, Lifting And Positioning.</td>
<td></td>
</tr>
<tr>
<td>8.01 Determines load.</td>
<td>STM-130 Rigging, Hoisting and Lifting</td>
</tr>
<tr>
<td>8.02 Prepares lift plan(s).</td>
<td>STM-130 Rigging, Hoisting and Lifting</td>
</tr>
<tr>
<td>8.03 Selects rigging, hoisting, lifting and positioning equipment.</td>
<td>STM-130 Rigging, Hoisting and Lifting</td>
</tr>
<tr>
<td>8.04 Inspects rigging, hoisting, lifting and positioning equipment.</td>
<td>STM-130 Rigging, Hoisting and Lifting</td>
</tr>
<tr>
<td>8.05 Secures lift area.</td>
<td>STM-130 Rigging, Hoisting and Lifting</td>
</tr>
<tr>
<td>8.06 Sets up rigging, hoisting, lifting and positioning equipment.</td>
<td>STM-210 Piping System Component Fabrication (Spool)</td>
</tr>
<tr>
<td></td>
<td>STM-215 Fiberglass Piping</td>
</tr>
<tr>
<td></td>
<td>STM-220 Specialty Piping</td>
</tr>
<tr>
<td>8.07 Performs lift and positioning.</td>
<td>STM-130 Rigging, Hoisting and Lifting</td>
</tr>
<tr>
<td>RSOS Sub-task</td>
<td>AACS Unit</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------</td>
</tr>
<tr>
<td>8.08</td>
<td>STM-130</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Task 9 - Performs Complex And Critical Rigging, Hoisting, Lifting And Positioning.</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.01 Prepares lift plan for complex and critical rigging, hoisting, lifting and positioning.</td>
</tr>
<tr>
<td>9.02 Performs calculations for complex and critical rigging, hoisting, lifting and positioning.</td>
</tr>
<tr>
<td>9.03 Selects rigging, hoisting, lifting and positioning equipment for complex and critical lifts.</td>
</tr>
<tr>
<td>9.04 Sets up rigging, hoisting, lifting and positioning equipment for complex and critical lifts.</td>
</tr>
<tr>
<td>9.05 Performs complex and critical lifts and positioning.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Task 10 - Installs, Tests, Maintains, Troubleshoots And Repairs Low Pressure Steam And Condensate Systems.</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.01 Installs equipment for low pressure steam and condensate systems.</td>
</tr>
<tr>
<td>10.02 Installs piping for low pressure steam and condensate systems.</td>
</tr>
<tr>
<td>10.03 Tests low pressure steam and condensate systems.</td>
</tr>
<tr>
<td>10.04 Maintains, troubleshoots and repairs low pressure steam and condensate systems.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Task 11 - Installs, Tests, Maintains, Troubleshoots And Repairs High Pressure Steam And Condensate Systems.</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.01 Installs equipment for high pressure steam and condensate systems.</td>
</tr>
<tr>
<td>11.02 Installs piping for high pressure steam and condensate systems.</td>
</tr>
<tr>
<td>11.03 Tests high pressure steam and condensate systems.</td>
</tr>
<tr>
<td>11.04 Maintains, troubleshoots and repairs high pressure steam and condensate systems.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Task 12 - Installs, Tests, Maintains, Troubleshoots And Repairs Hydronic Systems.</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.01 Installs equipment for hydronic systems.</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>12.02 Installs piping for hydronic systems.</td>
</tr>
<tr>
<td>Task 13 - Installs, Tests, Maintains, Troubleshoots And Repairs Process Piping Systems.</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>13.01 Installs equipment for process piping systems.</td>
</tr>
<tr>
<td>13.02 Installs piping for process piping systems.</td>
</tr>
<tr>
<td>13.03 Tests process piping systems.</td>
</tr>
<tr>
<td>13.04 Maintains, troubleshoots and repairs process piping systems.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Task 14 - Installs, Tests, Maintains, Troubleshoots And Repairs Industrial Water And Waste Treatment Systems.</th>
<th>RSOS Sub-task</th>
<th>AACS Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.01 Installs equipment for industrial water and waste treatment systems.</td>
<td>STM-300</td>
<td>Industrial Water and Waste Systems</td>
</tr>
<tr>
<td>14.02 Installs piping for industrial water and waste treatment systems.</td>
<td>STM-300</td>
<td>Industrial Water and Waste Systems</td>
</tr>
<tr>
<td>14.03 Tests industrial water and waste treatment systems.</td>
<td>STM-300</td>
<td>Industrial Water and Waste Systems</td>
</tr>
<tr>
<td>14.04 Maintains, troubleshoots and repairs industrial water and waste treatment systems.</td>
<td>STM-300</td>
<td>Industrial Water and Waste Systems</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Task 15 - Installs, Tests, Maintains Troubleshoots And Repairs Hydraulic Systems.</th>
<th>RSOS Sub-task</th>
<th>AACS Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.01 Installs equipment for hydraulic systems.</td>
<td>STM-405</td>
<td>Hydraulic Systems</td>
</tr>
<tr>
<td>15.02 Installs piping, tubing and hoses for hydraulic systems.</td>
<td>STM-405</td>
<td>Hydraulic Systems</td>
</tr>
<tr>
<td>15.03 Tests hydraulic systems.</td>
<td>STM-405</td>
<td>Hydraulic Systems</td>
</tr>
<tr>
<td>15.04 Maintains, troubleshoots and repairs hydraulic systems.</td>
<td>STM-405</td>
<td>Hydraulic Systems</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Task 16 - Installs, Tests, Maintains, Troubleshoots And Repairs Heating, Ventilation, Air Conditioning And Refrigeration (HVACR) Systems.</th>
<th>RSOS Sub-task</th>
<th>AACS Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.01 Installs equipment for HVACR systems.</td>
<td>STM-420</td>
<td>Refrigeration Systems</td>
</tr>
<tr>
<td>16.02 Installs hydronic piping and refrigeration tubing for HVACR systems.</td>
<td>STM-420</td>
<td>Refrigeration Systems</td>
</tr>
<tr>
<td>16.03 Tests associated components of HVACR systems.</td>
<td>STM-420</td>
<td>Refrigeration Systems</td>
</tr>
<tr>
<td>RSOS Sub-task</td>
<td>AACS Unit</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>16.04</td>
<td>STM-420</td>
<td>Refrigeration Systems</td>
</tr>
</tbody>
</table>

Task 17 - Installs, Tests, Maintains, Troubleshoots And Repairs Fuel Systems.

<table>
<thead>
<tr>
<th>Task 17</th>
<th>Description</th>
<th>AACS Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.01</td>
<td>Installs equipment for fuel systems.</td>
<td>STM-320</td>
</tr>
<tr>
<td>17.02</td>
<td>Installs piping and tubing for fuel systems.</td>
<td>STM-320</td>
</tr>
<tr>
<td>17.03</td>
<td>Tests fuel systems.</td>
<td>STM-320</td>
</tr>
<tr>
<td>17.04</td>
<td>Maintains, troubleshoots and repairs fuel systems.</td>
<td>STM-320</td>
</tr>
</tbody>
</table>

Task 18 - Installs, Tests, Maintains, Troubleshoots And Repairs Medical Gas Systems.

<table>
<thead>
<tr>
<th>Task 18</th>
<th>Description</th>
<th>AACS Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.01</td>
<td>Installs equipment for medical gas systems.</td>
<td>STM-325</td>
</tr>
<tr>
<td>18.02</td>
<td>Installs piping and tubing for medical gas systems.</td>
<td>STM-325</td>
</tr>
<tr>
<td>18.03</td>
<td>Tests medical gas systems.</td>
<td>STM-325</td>
</tr>
<tr>
<td>18.04</td>
<td>Maintains, troubleshoots and repairs medical gas systems</td>
<td>STM-325</td>
</tr>
</tbody>
</table>

Task 19 - Installs, Tests, Maintains, Troubleshoots And Repairs Compressed Air And Pneumatic Systems.

<table>
<thead>
<tr>
<th>Task 19</th>
<th>Description</th>
<th>AACS Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.01</td>
<td>Installs equipment for compressed air and pneumatic systems.</td>
<td>STM-410</td>
</tr>
<tr>
<td>19.02</td>
<td>Installs piping and tubing for compressed air and pneumatic systems.</td>
<td>STM-410</td>
</tr>
<tr>
<td>19.03</td>
<td>Tests compressed air and pneumatic systems.</td>
<td>STM-410</td>
</tr>
<tr>
<td>19.04</td>
<td>Maintains, troubleshoots and repairs compressed air and pneumatic systems.</td>
<td>STM-410</td>
</tr>
</tbody>
</table>

Task 20 - Installs, And Tests Fire Protection Systems. (Not Common Core)

<table>
<thead>
<tr>
<th>Task 20</th>
<th>Description</th>
<th>AACS Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.01</td>
<td>Installs equipment for fire protection systems. (NOT COMMON CORE)</td>
<td></td>
</tr>
<tr>
<td>20.02</td>
<td>Installs piping for fire protection systems. (NOT COMMON CORE)</td>
<td></td>
</tr>
<tr>
<td>20.03</td>
<td>Tests fire protection systems. (NOT COMMON CORE)</td>
<td></td>
</tr>
</tbody>
</table>

Task 21 - Installs, Tests, Maintains, Troubleshoots And Repairs Geo-Exchange And Geothermal Systems.

<table>
<thead>
<tr>
<th>Task 21</th>
<th>Description</th>
<th>AACS Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.01</td>
<td>Installs equipment for geo-exchange and geothermal systems.</td>
<td>STM-430</td>
</tr>
<tr>
<td>21.02</td>
<td>Installs piping for geo-exchange and geothermal systems.</td>
<td>STM-430</td>
</tr>
<tr>
<td>21.03</td>
<td>Tests geo-exchange and geothermal systems.</td>
<td>STM-430</td>
</tr>
<tr>
<td>RSOS Sub-task</td>
<td>AACS Unit</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>21.04</td>
<td>Maintains, troubleshoots and repairs geo-exchange and geothermal systems.</td>
<td>STM-430</td>
</tr>
<tr>
<td>Task 22 - Installs, Tests, Maintains, Troubleshoots And Repairs Solar Heating Systems.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.01</td>
<td>Installs equipment for solar heating systems.</td>
<td>STM-435</td>
</tr>
<tr>
<td>22.02</td>
<td>Installs piping for solar heating systems.</td>
<td>STM-435</td>
</tr>
<tr>
<td>22.03</td>
<td>Tests solar heating systems.</td>
<td>STM-435</td>
</tr>
<tr>
<td>22.04</td>
<td>Maintains, troubleshoots and repairs solar heating systems</td>
<td>STM-435</td>
</tr>
<tr>
<td>Task 23 - Installs, Tests, Maintains, Troubleshoots And Repairs Heat Recovery Systems.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.01</td>
<td>Installs equipment for heat recovery systems.</td>
<td>STM-425</td>
</tr>
<tr>
<td>23.02</td>
<td>Installs piping for heat recovery systems.</td>
<td>STM-425</td>
</tr>
<tr>
<td>23.03</td>
<td>Tests heat recovery systems.</td>
<td>STM-425</td>
</tr>
<tr>
<td>23.04</td>
<td>Maintains, troubleshoots and repairs heat recovery systems.</td>
<td>STM-425</td>
</tr>
<tr>
<td>Task 24 - Prepares System For Commissioning, Start-Up And Turnover.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.01</td>
<td>Flushes system.</td>
<td>STM-445</td>
</tr>
<tr>
<td>24.02</td>
<td>Chemically treats system.</td>
<td>STM-445</td>
</tr>
<tr>
<td>24.03</td>
<td>Pre-checks system for commissioning.</td>
<td>STM-445</td>
</tr>
<tr>
<td>24.04</td>
<td>Selects and connects commissioning equipment.</td>
<td>STM-445</td>
</tr>
<tr>
<td>Task 25 - Commissions Systems.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.01</td>
<td>Secures commissioning area.</td>
<td>STM-300</td>
</tr>
<tr>
<td></td>
<td></td>
<td>STM-310</td>
</tr>
<tr>
<td></td>
<td></td>
<td>STM-320</td>
</tr>
<tr>
<td></td>
<td></td>
<td>STM-325</td>
</tr>
<tr>
<td></td>
<td></td>
<td>STM-405</td>
</tr>
<tr>
<td></td>
<td></td>
<td>STM-410</td>
</tr>
<tr>
<td></td>
<td></td>
<td>STM-415</td>
</tr>
<tr>
<td></td>
<td></td>
<td>STM-420</td>
</tr>
<tr>
<td></td>
<td></td>
<td>STM-425</td>
</tr>
<tr>
<td></td>
<td></td>
<td>STM-430</td>
</tr>
<tr>
<td></td>
<td></td>
<td>STM-435</td>
</tr>
<tr>
<td></td>
<td></td>
<td>STM-440</td>
</tr>
<tr>
<td></td>
<td></td>
<td>STM-445</td>
</tr>
<tr>
<td>25.02</td>
<td>Pressurizes system.</td>
<td>STM-445</td>
</tr>
<tr>
<td>25.03</td>
<td>Inspects system.</td>
<td>STM-445</td>
</tr>
<tr>
<td>25.04</td>
<td>Corrects faulty conditions.</td>
<td>STM-445</td>
</tr>
<tr>
<td>RSOS Sub-task</td>
<td>AACS Unit</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-------------------------------</td>
<td></td>
</tr>
<tr>
<td>25.05</td>
<td>Participates in start-up and turnover procedures.</td>
<td>STM-445</td>
</tr>
</tbody>
</table>
Level 1
MENT-1801 Workplace Mentoring I
(Nova Scotia Unit of Instruction)

Learning Outcomes:

- Identify and explain strategies for learning workplace skills.
- Demonstrate strategies to assist in learning skills in the workplace.

Objectives and Content:

1. Describe the importance of your own experiences.
2. Identify the partners involved in apprenticeship.
3. Describe the shared responsibilities for workplace learning.
4. Determine your own learning preferences and explain how these relate to learning new skills.
5. Describe the importance of different types of skills in the workplace.
6. Describe the importance of essential skills in the trade.
7. Identify different ways of learning.
8. Identify your learning preferences.
9. Identify different learning needs and strategies to meet learning needs.
10. Identify techniques for effective communication.
11. Identify strategies to assist in learning a skill.

Resource:

- Recommended resource to use in the delivery of this unit:
 www.apprenticeship.nscc.ca/mentoring/apprentice.htm
STM-100 Safety

Learning Outcomes:

- Demonstrate knowledge of safe work practices.
- Demonstrate knowledge of regulatory requirements pertaining to workplace safety.
- Demonstrate knowledge of PPE and safety equipment, its applications, maintenance and procedures for use.
- Demonstrate knowledge of applications and procedures for locking out equipment.

2015 Red Seal Occupational Standard Reference:

1.01 Maintains safe work environment.
1.02 Selects, inspects and uses personal protective equipment (PPE) and safety equipment.
1.03 Follows lock-out procedures.

Suggested Hours:

12 Hours

Objectives and Content:

Theoretical Objectives

1. Identify hazards and describe safe work practices.
 i) poor housekeeping
 ii) overhead hazards
 iii) confined space hazards
 iv) hot work hazards
 v) asbestos
 vi) noise hazards
 vii) environmental hazards
 viii) vibration hazards
 ix) air quality

2. Identify and describe local and jurisdictional laws and requirements.
3. Identify safety regulations pertaining to locking out electrical equipment, piping equipment and piping.

4. Identify training required by jurisdictional codes and regulations, and site-specific regulations.

5. Identify situations that require lock-out.

6. Identify regulations and safety documentation pertaining to the use of PPE and safety equipment.

7. Identify and describe company or jurisdictional procedures for emergency response.

8. Identify types of PPE and safety equipment and describe their applications, limitations and procedures for use.
 i) PPE
 - fall arrest systems
 - respirators and face shields
 - steel toed boots
 - hardhats
 - safety glasses
 - hearing protection
 - gloves, face shields
 - protective wristlets
 - fire-retardant clothing
 ii) equipment
 - fire extinguishers
 - hand rails
 - first aid kits
 - smoke and fume extractors

9. Describe procedures used to care for, maintain and store PPE and safety equipment.

10. Describe procedures for locking out equipment and piping.
 i) lockout equipment
 - lock and key
 - chains and tags
 - lock-out scissor clamp
- lock-box

Practical Objectives

N/A
STM-105 Communication and Trade Documentation

Learning Outcomes:

- Demonstrate knowledge of effective communication practices.
- Demonstrate knowledge of trade related documentation and its use.

2015 Red Seal Occupational Standard Reference:

3.01 Plans Work.

Suggested Hours:

6 Hours

Objectives and Content:

Theoretical Objectives

1. Describe the importance of effective verbal and non-verbal communication with.
 i) other tradespersons
 ii) colleagues
 iii) supervisors
 iv) suppliers/manufacturers
 v) clients/customers
 vi) inspectors

2. Identify types of communication equipment and describe their applications and procedures for use.

3. Identify types of trade related documentation and describe their applications and procedures for use.
 i) manufacturers’ specifications
 ii) codes and standards
 iii) work orders
 iv) maintenance schedules
 v) permits
 vi) quality control
4. Explain the process, requirements and information sources for completing trade related documentation and reports.
 i) documentation
 ii) drawings
 iii) related professionals
 iv) clients

Practical Objectives

N/A
STM-110 Tools and Equipment

Learning Outcomes:

- Demonstrate knowledge of tools and equipment, their applications, maintenance and procedures for use.

2015 Red Seal Occupational Standard Reference:

2.01 Uses common tools and equipment.

Suggested Hours:

24 Hours

Objectives and Content:

Theoretical Objectives

1. Identify types of hand tools and describe their applications and procedures for use.

2. Identify types of power tools and describe their applications and procedures for use.
 i) electrical
 ii) pneumatic
 iii) hydraulic

3. Identify types of measuring tools and equipment and describe their applications and procedures for use.

4. Identify types of powder-actuated tools and describe their applications.

5. Describe the procedures used to inspect, maintain and store tools and equipment.

Practical Objectives

1. Use tools and equipment.
STM-115 Access Equipment

Learning Outcomes:

- Demonstrate knowledge of ladders, scaffolding and motorized work platforms, their applications, limitations and procedures for use.

2015 Red Seal Occupational Standard Reference:

2.02 Uses access equipment.

Suggested Hours:

6 Hours

Objectives and Content:

Theoretical Objectives

1. Identify hazards and describe safe work practices pertaining to ladders, scaffolding and motorized work platforms.

2. Identify jurisdictional regulations and site specific requirements pertaining to ladders, scaffolding and motorized work platforms.
 i) personnel training/certification
 ii) equipment certification requirements
 iii) proper use and limitations of equipment

3. Identify types of ladders and describe their characteristics and applications.
 i) step ladders
 ii) extension ladders
 iii) platform ladders

4. Identify types of scaffolding and describe their characteristics and applications.
 i) tube and clamp
 ii) swing stage
 iii) frame scaffolding
5. Identify types of motorized work platforms and describe their characteristics and applications.
 i) scissor lift
 ii) articulated boom
 iii) personnel basket

6. Describe the procedures used to erect and dismantle ladders and scaffolding.

Practical Objectives

N/A
STM-120 Introduction to Welding

Learning Outcomes:

- Demonstrate knowledge of welding equipment, applications and procedures

2015 Red Seal Occupational Standard Reference:

2.03 Uses welding equipment.

Suggested Hours:

18 Hours

Objectives and Content:

Theoretical Objectives

1. Identify certification requirements for performing welding.

2. Describe the procedures used to inspect, maintain and store welding equipment.

3. Identify types of welding equipment.
 i) SMAW equipment
 ii) orbital welding machines and equipment
 iii) GTAW equipment
 iv) torches
 v) GMAW equipment

4. Identify different welding processes and applications.
 i) metal inert gas (MIG)
 - gas metal arc welding (GMAW)
 - flux core arc welding (FCAW)
 ii) tungsten inert gas (TIG)
 iii) electric welding/shielded metal arc welding (SMAW)
 iv) orbital welding
 v) GTAW
5. Identify welding consumables.
 i) welding rods
 ii) flux
 iii) grinding discs

6. Identify basic weld joints and describe their applications.

7. Describe the procedures used to tack weld.

8. Describe the properties and characteristics of metals.

Practical Objectives

1. Use welding equipment.
STM-125 Fuel Brazing and Soldering

Learning Outcomes:

- Demonstrate knowledge of soldering and brazing equipment, applications and procedures.
- Demonstrate knowledge of oxy-fuel equipment, applications and procedures.

2015 Red Seal Occupational Standard Reference:

2.04 Uses soldering and brazing equipment.
2.05 Uses oxy-fuel equipment.

Suggested Hours:

18 Hours

Objectives and Content:

Theoretical Objectives

1. Identify types of soldering and brazing equipment.
 i) oxy-acetylene and air-acetylene torches
 ii) attachments
 - strikers
 - MAPP
 - gas cylinder and torch heads

2. Identify different soldering and brazing processes and applications.
 i) cutting

3. Identify purge procedures required for brazing.
 i) dams
 ii) purge gas
 iii) pressures
 iv) flow rates

4. Identify oxy-fuel equipment components.
 i) hoses
ii) flashback arrestors

5. Identify soldering and brazing consumables.
 i) silver solder
 ii) flux
 iii) soft solder
 iv) brazing rod
 v) sand cloth

6. Identify certification requirements for performing brazing.

7. Describe the procedures used to inspect, maintain and store soldering and brazing equipment.

8. Describe the procedures used to inspect, maintain and store oxy-fuel equipment.

Practical Objectives

1. Use soldering and brazing equipment.
STM-130 Rigging, Hoisting and Lifting

Learning Outcomes:

- Demonstrate knowledge of hoisting, lifting, positioning and rigging equipment, their applications, limitations and procedures for use and storage.
- Demonstrate knowledge of calculations required when performing hoisting and lifting operations.
- Demonstrate knowledge of the procedures used to select equipment for hoisting, lifting and positioning operations.
- Demonstrate knowledge of the procedures used to perform hoisting, lifting and positioning operations.
- Demonstrate knowledge of inspection for rigging, hoisting, lifting and positioning equipment.

2015 Red Seal Occupational Standard Reference:

8.01 Determines load.
8.02 Prepares lift plan(s).
8.03 Selects rigging, hoisting, lifting and positioning equipment.
8.04 Inspects rigging, hoisting, lifting and positioning equipment.
8.05 Secures lift area.
8.06 Sets up rigging, hoisting, lifting and positioning equipment.
8.07 Performs lift and positioning.
8.08 Maintains and stores rigging, hoisting, lifting and positioning equipment.

Suggested Hours:

30 Hours

Objectives and Content:

Theoretical Objectives

1. Define terminology associated with hoisting, lifting, rigging and positioning.

2. Identify hazards and describe safe work practices pertaining to hoisting, lifting, rigging and positioning.
 i) wind
ii) shock loading

3. Identify codes and regulations pertaining to hoisting, lifting and rigging.

4. Identify information pertaining to rigging equipment weight found on drawings and specifications.
 i) shop drawings
 ii) manufacturers’ specifications

5. Identify documentation required for engineered lifts.

6. Describe the procedures used to ensure a safe work area.
 i) supervision of lift
 ii) securing work area
 iii) communication

7. Describe the procedures used to rig material/equipment for lifting.
 i) load determination
 ii) communication methods
 iii) pre-lift checks
 iv) placement of load
 v) post-lift inspection

8. Identify the factors to consider when selecting rigging equipment.
 i) load characteristics
 ii) rigging inspection
 iii) equipment fatigue
 iv) environment
 v) safety factor (5 to 1 and 10 to 1)
 vi) sling angles

9. Identify types of rigging, hoisting, lifting and positioning equipment and accessories.
 i) lugs
 ii) chain falls
 iii) come alongs
 iv) spreader bars
 v) shackles
 vi) slings
 vii) tuggers
viii) cranes
ix) forklifts
x) rollers
xi) chain falls
xii) jacks
xiii) cable grip hoists

10. Identify and describe procedures used to communicate during set up and lifting operations.
 i) hand signals
 ii) electronic communications
 iii) audible/visual

11. Identify jurisdictional regulations and trade practice pertaining to rigging, hoisting, lifting and positioning.

12. Describe the procedures used to inspect, maintain and store rigging, hoisting, lifting, and positioning equipment.

13. Identify types of knots, hitches and bends and describe their applications and the procedures used to tie them.

14. Explain correlation of sling angles to sling capacities.
 i) 45°
 ii) 60°

15. Identify types of ropes used in rigging.

16. Explain how to calculate load weight.

Practical Objectives

1. Perform a basic lift of a pipe spool.
STM-135 Bracket, Support, Hanger, Guides and Anchor Fabrication

Learning Outcomes:

- Demonstrate knowledge of the procedures used to fabricate brackets, supports, hangers, guides and anchors.

2015 Red Seal Occupational Standard Reference:

4.02 Fabricates brackets, supports, hangers, guides and anchors.

Suggested Hours:

12 Hours

Objectives and Content:

Theoretical Objectives

1. Interpret information pertaining to brackets, supports, hangers, guides and anchors fabrication found on drawings and specifications.

2. Interpret codes and regulations pertaining to brackets, supports, hangers, guides and anchors fabrication.
 i) ASME B31
 ii) Canadian Welding Bureau (CWB)

3. Identify fabrication tools and equipment relating to brackets, supports, hangers, guides and anchors fabrication and describe their applications and procedures for use.

4. Identify types of joining methods and describe their applications.

5. Identify types of fabrication techniques and describe their applications.

6. Describe the procedures used to fabricate and assemble brackets, supports, hangers, guides and anchors.

Practical Objectives

1. Fabricate pipe supports.
STM-140 Drawings and Specifications I

Learning Outcomes:

- Demonstrate knowledge of drawings and their applications.
- Demonstrate knowledge of basic drawing and sketching techniques.

2015 Red Seal Occupational Standard Reference:

3.02 Generates drawings.

Suggested Hours:

30 Hours

Objectives and Content:

Theoretical Objectives

1. Describe metric and imperial systems of measurement and the procedures used to perform conversions.

2. Identify the types of drawings and describe their applications.
 i) civil/site
 ii) architectural
 iii) mechanical
 iv) structural
 v) electrical
 vi) shop drawings
 vii) sketches

3. Identify types of symbols and describe their characteristics and applications.

4. Identify drawing projections and views, and describe their applications.
 i) projections
 - orthographic
 - oblique
 - isometric
 - pictorial
ii) views
 - plan
 - section
 - detail
 - elevation
 - cross section

5. Describe the use of scales.

Practical Objectives

1. Perform basic drawing and sketching techniques.
STM-145 Copper Tube and Tubing

Learning Outcomes:

- Demonstrate knowledge of copper tube and tubing, fittings and related components.
- Demonstrate knowledge of the procedures used to measure and size copper tube and tubing and related components.
- Demonstrate knowledge of the procedures used to cut, bend and join copper tube and tubing and related components.

2015 Red Seal Occupational Standard Reference:

4.01 Fabricates piping system components.
4.02 Fabricates brackets, supports, hangers, guides and anchors.
5.01 Lays out, identifies and installs copper tube, fittings and related components.

Suggested Hours:

12 Hours

Objectives and Content:

Theoretical Objectives

1. Explain the systems of measurement for copper tube and tubing.

2. Interpret codes and regulations pertaining to copper tube and tubing.
 i) manufacturers’ certification requirements
 ii) ASTM

3. Interpret information pertaining to copper tubing found on drawings and specifications.

4. Identify tools and equipment relating to copper tube and tubing, fittings and their components and describe their applications and procedures for use.

5. Identify types of fittings used with copper tube and tubing and describe their purpose and applications.
i) elbows
ii) tees
iii) crosses

6. Identify the methods used to cut and join copper tube, and tubing, and describe their associated procedures.
i) join
 - brazing
 - soldering
 - flaring
 - roll grooving
 - compression fittings

7. Identify copper tube and tubing related components and describe their purpose and applications.
i) bolts
ii) studs
iii) gaskets
iv) brackets
v) supports
vi) hangers
vii) spring cam
viii) guides
ix) anchors

8. Describe the procedures used to measure copper tube and tubing and fittings.
i) fitting allowance
ii) offset calculations
iii) trade math

9. Describe the procedures and bending tools and equipment used to bend copper tube and tubing.
i) hand benders
ii) hydraulic benders

10. Describe the procedures used to install and test copper tube, tubing, fittings and related components.

11. Describe the identification systems and methods of identification for copper tube and tubing.
i) K
ii) L
iii) M
iv) DWV
v) ACR

Practical Objectives

1. Join copper tube and tubing using various methods.
STM-150 Pipe and Tube Bending

Learning Outcomes:

- Demonstrate knowledge of pipe and tube bending equipment and their applications.
- Demonstrate knowledge of the procedures to select, layout and bend pipe and tube.

2015 Red Seal Occupational Standard Reference:

N/A

Suggested Hours:

12 Hours

Objectives and Content:

Theoretical Objectives

1. Define terminology associated with pipe and tube bending.

2. Identify hazards and describe safe work practices pertaining to pipe and tube bending.

3. Interpret codes and specifications pertaining to pipe and tube bending.

4. Interpret information pertaining to pipe and tube bending found on drawings and specifications.

5. Identify tools and equipment related to pipe and tube bending and describe their applications and procedures for use.

6. Identify the considerations when selecting materials for bending.

7. Identify the methods used to bend pipe and tube and describe their applications.

8. Identify the types of pipe and tube bending and describe their applications.
9. Describe the procedures used to perform cold bending.

10. Describe the procedures used to perform hot bending.

11. Perform calculations pertaining to hot bending.

12. Describe the procedures used to bend copper and stainless steel pipe and tube using hand benders.

Practical Objectives

1. Lay out and mark pipe, tube and tubing for bending.

2. Bend pipe, tube and tubing.
STM-155 Plastic Piping

Learning Outcomes:

- Demonstrate knowledge of plastic piping and tubing, fittings and related components.
- Demonstrate knowledge of the procedures used to measure and size plastic piping, tubing and related components.
- Demonstrate knowledge of the procedures used to cut, bend and join plastic piping, tubing and related components.

2015 Red Seal Occupational Standard Reference:

4.01 Fabricates piping system components.
4.02 Fabricates brackets, supports, hangers, guides and anchors.
5.02 Lays out, identifies and installs plastic piping, tubing, fittings and related components.

Suggested Hours:

12 Hours

Objectives and Content:

Theoretical Objectives

1. Explain the systems of measurement for plastic piping and tubing.
2. Interpret codes and regulations pertaining to plastic piping and tubing.
3. Interpret information pertaining to plastic piping and tubing found on drawings and specifications.
4. Identify tools and equipment relating to plastic piping and tubing.
5. Identify plastic piping and tubing fittings and related components and describe their applications and procedures for use.
6. Identify types of plastic piping and tubing and describe their purpose and applications.
 i) ABS
 ii) CPVC
 iii) PP
 iv) PE
 v) PEX

7. Identify types of fittings used with plastic piping and tubing and describe their purpose and applications.
 i) elbows
 ii) tees
 iii) crosses

8. Identify the systems and criteria used in referencing, selecting and ordering plastic piping and tubing.

9. Identify the methods used to cut and join plastic pipe and tubing, and describe their associated procedures and cutting and reaming tools and equipment.
 i) join
 - compression fittings
 - solvent cementing
 - threading, fusion

10. Describe the procedures and bending tools and equipment used to bend plastic piping and tubing.

11. Describe the procedures used to install and test plastic piping and tubing, fittings and related components.

12. Describe the identification systems and methods of identification for plastic piping and tubing.

13. Describe the procedures used to measure plastic piping, tubing and fittings.
 i) dimension
 ii) length
 iii) fitting allowance
 iv) offset calculations
 v) trade math
Practical Objectives

1. Join plastic pipe and tubing using various methods.
STM-160 Carbon Steel Piping

Learning Outcomes:

- Demonstrate knowledge of carbon steel piping and tubing, fittings and related components.

2015 Red Seal Occupational Standard Reference:

4.01 Fabricates piping system components.
4.02 Fabricates brackets, supports, hangers, guides and anchors.
5.03 Lays out, identifies and installs carbon steel piping, tubing, fittings and related components.

Suggested Hours:

24 Hours

Objectives and Content:

Theoretical Objectives

1. Identify tools and equipment relating to carbon steel piping and tubing, fittings and related components and describe their applications and procedures for use.

2. Interpret codes and regulations pertaining to carbon steel piping.
 i) ASME B31

3. Interpret information pertaining to carbon steel piping and tubing found on drawings and specifications.

4. Describe the identification systems and methods of identification for carbon steel piping and tubing.

5. Identify fittings used with carbon steel piping and tubing and describe their purpose and applications.
 i) elbows
 ii) tees
 iii) crosses
6. Identify carbon steel piping and tubing related components and describe their purpose and applications.
 i) bolts
 ii) studs
 iii) gaskets
 iv) brackets
 v) supports
 vi) hangers
 vii) guides
 viii) anchors

7. Explain the systems of measurement for carbon steel piping and tubing.
 i) dimension
 ii) length
 iii) wall thickness/schedule

8. Describe the procedures used to measure carbon steel piping and tubing, and fittings.
 i) fitting allowance
 ii) offset calculations
 iii) trade math

9. Describe the procedures used to inspect carbon steel piping and tubing.
 i) quality assurance
 ii) quality control (QA/QC) requirements

10. Describe the different methods of pipe and fitting end preparation.
 i) standard bevel
 ii) compound bevel

11. Identify the methods used to cut carbon steel piping and tubing, and describe their associated procedures.

12. Identify the joining methods for carbon steel piping and tubing and describe their associated procedures.
 i) threading
 ii) tacking/welding
 iii) flanging
 iv) roll grooving
 v) compression fittings
13. Describe pre/post-weld activities.
 i) stress relieving
 ii) cleaning procedures
 iii) controlled cooling
 iv) pre-heating or purging
 v) chemical treating
 vi) protective coatings

14. Describe the procedures and bending tools and equipment used to bend carbon steel piping and tubing.
 i) hand benders
 ii) hydraulic benders

15. Describe the procedures used to install and test fittings and related components for carbon steel piping and tubing.

Practical Objectives

1. Join carbon steel piping using various methods.
Learning Outcomes:

- Demonstrate knowledge of stainless steel piping and tubing, fittings and related components.
- Demonstrate knowledge of the procedures used to measure stainless steel piping.
- Demonstrate knowledge of the procedures used to cut and join stainless steel piping.

2015 Red Seal Occupational Standard Reference:

4.01 Fabricates piping system components.
4.02 Fabricates brackets, supports, hangers, guides and anchors.
5.04 Lays out, identifies and installs stainless steel piping, tubing, fittings and related components.

Suggested Hours:

6 Hours

Objectives and Content:

Theoretical Objectives

1. Interpret codes and regulations pertaining to stainless steel piping.
 i) ASME B31

2. Interpret information pertaining to stainless steel piping and tubing found on drawings and specifications.

3. Explain the systems of measurement for stainless steel piping and tubing.
 i) dimension
 ii) length
 iii) wall thickness/schedule

4. Identify tools and equipment relating to stainless steel piping, tubing, fittings and related components and describe their applications and procedures for use.
5. Identify fittings used with stainless steel piping and tubing and describe their purpose and applications.
 i) elbows
 ii) tees
 iii) crosses

6. Identify stainless steel piping and tubing related components and describe their purpose and applications.
 i) bolts
 ii) studs
 iii) gaskets
 iv) brackets
 v) supports
 vi) hangers
 vii) guides
 viii) anchors

7. Identify the methods used to cut stainless steel piping and tubing, and describe their associated procedures.

8. Identify the joining methods used to join stainless steel piping and tubing and describe their associated procedures.

9. Describe pre/post-weld activities.
 i) stress relieving
 ii) cleaning procedures
 iii) controlled cooling
 iv) pre-heating or purging
 v) chemical treating
 vi) protective coatings

10. Describe the procedures and bending tools and equipment used to bend stainless steel piping and tubing.

11. Describe the procedures used to install and test fittings and related components for stainless steel piping and tubing.

12. Describe the procedures and methods to prevent cross contamination.
 i) labelling
 ii) physical separation
iii) barriers

13. Describe the identification systems and methods for stainless steel piping and tubing.

14. Explain the systems of measurement for carbon steel piping and tubing.
 i) dimension
 ii) length
 iii) wall thickness/schedule

15. Describe the procedures used to measure stainless steel piping and tubing and fittings.
 i) fitting allowance
 ii) offset calculations
 iii) trade math

16. Describe the procedures used to inspect stainless steel piping and tubing.
 i) QA/QC requirements

17. Describe the different methods of pipe and fitting end preparation.
 i) standard bevel
 ii) compound bevel

Practical Objectives

1. Join stainless steel piping using various joining methods.
STM-170 Piping Valves

Learning Outcomes:

- Demonstrate knowledge of piping valves, their applications and operation.
- Demonstrate knowledge of the procedures used to install valves.

2015 Red Seal Occupational Standard Reference:

6.01 Installs valves.
6.02 Maintains, troubleshoots, repairs and tests valves.

Suggested Hours:

18 Hours

Objectives and Content:

Theoretical Objectives

1. Interpret codes, regulations and standards pertaining to piping valves.
 i) MSS
 ii) ANSI

2. Interpret information found on drawings and specifications pertaining to valves.

3. Identify tools and equipment relating to piping valves and describe their applications and procedures for use.

4. Identify types of piping valves and describe their characteristics, operation and applications.
 i) gate
 ii) globe
 iii) ball
 iv) plug
 v) butterfly
 vi) check
 vii) relief
 viii) pop safety
 ix) pressure reducing

5. Identify types of valve actuators and describe their purpose.
 i) electric
 ii) pneumatic
 iii) manual
 iv) hydraulic

6. Identify joining methods used to install piping valves and describe their associated procedures.

7. Describe necessary documentation for valve repair.
 i) QA/QC verification
 ii) recording of signoff that repair has been completed

8. Describe testing methods for testing valves and related components.
 i) hydrostatic
 ii) blue check

9. Identify defects requiring valve and related component repair.
 i) passing valve seal
 ii) leaking packing
 iii) seized or damaged related components

10. Describe procedures used to maintain and troubleshoot valves.
 i) troubleshoot
 - functional checks
 - visual inspections and use of temperature sensing devices
 - stethoscopes
 ii) maintain
 - lubricating
 - cleaning
 - inspecting
 - replacing

11. Describe procedures used to repair valves.
 i) disc and seat refurbishment
 ii) stem realignment
 iii) valve repacking
12. Explain piping valve rating systems and installation variables.

Practical Objectives

N/A
Level 2
STM-200 Drawings and Specifications II

Learning Outcomes:

- Demonstrate knowledge of digital tools and software for layout and design.
- Demonstrate ability to interpret and extract information from types of drawings and specification.
- Demonstrate knowledge of drawings and their applications.

2015 Red Seal Occupational Standard Reference:

3.02 Generates drawings.
3.03 Interprets drawings and specifications.

Suggested Hours:

30 Hours

Objectives and Content:

Theoretical Objectives

1. Identify types of drawings and specifications and describe their applications.
 i) P&ID
 ii) spool sheets
 iii) isometric drawings
 iv) revisions
 v) vendor/shop civil/site
 vi) architectural
 vii) mechanical
 viii) structural
 ix) electrical
 x) shop drawings
 xi) sketches

2. Identify symbols relating to drawings and describe their characteristics and applications.

3. Interpret and extract information from drawings and specifications.
4. Describe metric and imperial systems of measurement and the procedures used to perform conversions.

5. Identify drawing projections and views and describe their applications.
 i) projections
 - orthographic
 - oblique
 - isometric
 - pictorial
 ii) views
 - plan
 - section
 - detail
 - elevation
 - cross section

6. Describe the use of scales.

7. Identify types of digital tools and software for layout and design.
 i) total station
 ii) auto-CAD
 iii) CAD
 iv) building information management (BIM)

8. Identify applications for digital software tools.
 i) dimensional control
 ii) visualization of construction

Practical Objectives

1. Interpret drawings and specifications.
STM-205
Template Development

Learning Outcomes:

- Demonstrate knowledge of the methods of template development and their associated procedures.

2015 Red Seal Occupational Standard Reference:

3.04 Develop piping templates.

Suggested Hours:

30 Hours

Objectives and Content:

Theoretical Objectives

1. Interpret information pertaining to template development found on drawings.

2. Identify tools and equipment relating to template development and describe their applications and procedures for use.

3. Identify specifications for piping requirements used in template development.

4. Describe the procedures used to develop templates.
 i) standard template design
 ii) alternative template development methods

Practical Objectives

1. Develop a template and fabricate a fitting.
STM-210 Piping System Component Fabrication (Spool)

Learning Outcomes:

- Demonstrate knowledge of the procedures used to fabricate piping system components.

2015 Red Seal Occupational Standard Reference:

2.03 Uses welding equipment.
2.05 Uses oxy-fuel equipment.
4.01 Fabricates piping system components.
8.06 Sets up rigging, hoisting, lifting and positioning equipment.

Suggested Hours:

30 Hours

Objectives and Content:

Theoretical Objectives

1. Identify tools and equipment relating to piping system component fabrication and describe their applications and procedures for use.
 i) welding
 ii) oxy-fuel
 iii) rigging and hoisting

2. Interpret information pertaining to piping system component fabrication found on drawings and specifications.

3. Identify codes and regulations pertaining to piping system component fabrication.
 i) ASME B31

4. Identify types of fittings and piping system components and describe their characteristics and applications.
 i) fittings
 - elbows
 - tees
5. Identify types of joining methods and describe their applications.
 i) threading
 ii) grooving
 iii) gluing
 iv) welding
 v) compression
 vi) fusion

6. Identify types of fabrication techniques and describe their applications.
 i) cutting
 ii) bending
 iii) beveling

7. Identify types of treating methods and describe their applications.
 i) applying protective coatings
 ii) pickling
 iii) chemical flushing

8. Identify types of fitting tolerance practices and describe their applications.
 i) two-holing
 ii) gap
 iii) high-low
 iv) transitioning
 v) alignment

9. Identify pre/post-weld activities and describe their applications.
 i) stress relieving
 ii) cleaning procedures
 iii) controlled cooling
 iv) pre-heating or purging
 v) chemical treating
 vi) protective coatings
10. Describe the procedures used to fabricate and assemble piping system components.

Practical Objectives

1. Fabricate a carbon steel pipe spool.
STM-215 Fiberglass Piping

Learning Outcomes:

- Demonstrate knowledge of fiberglass piping, fittings and related components.
- Demonstrate knowledge of the procedures used to measure fiberglass piping.
- Demonstrate knowledge of the procedures used to cut and join fiberglass piping.

2015 Red Seal Occupational Standard Reference:

5.05 Lays outs, identifies and installs fiberglass piping, fittings and related components.
8.06 Sets up riggings, hoisting, lifting and positioning equipment.

Suggested Hours:

6 Hours

Objectives and Content:

Theoretical Objectives

1. Interpret information pertaining to fiberglass piping found on drawings and specifications.

2. Explain the systems of measurement for fiberglass piping.
 i) dimension
 ii) length
 iii) wall thickness/schedule

3. Identify the systems and criteria used in referencing, selecting and ordering fiberglass piping.

4. Identify tools and equipment relating to fiberglass piping, fittings and related components and describe their applications and procedures for use.

5. Identify types of fiberglass piping and describe their purpose and applications.
 i) FRP
 ii) GFRP
iii) GRE

6. Identify fittings used with fiberglass piping and describe their purpose and applications.

7. Identify fiberglass piping related components and describe their purpose and applications.
 i) washers
 ii) bolts
 iii) studs
 iv) gaskets
 v) brackets
 vi) supports
 vii) hangers
 viii) guides
 ix) anchors

8. Identify and describe the methods used to join fiberglass piping and describe their associated procedures and materials.
 i) joining
 - butt and wrap
 - bell and spigot
 - threading
 ii) material
 - vinyl ester
 - polyester
 - halogenated resins
 - epoxies

9. Describe the identification systems and methods for fiberglass piping.

10. Describe the procedures used to measure fiberglass piping.
 i) fitting allowance
 ii) offset calculations
 iii) trade math

11. Describe the procedures used to install and test fiberglass piping, fittings and related components for fiberglass piping.
 i) hydrostatic
 ii) pneumatic
 iii) NDE
Practical Objectives

N/A
STM-220 Specialty Piping

Learning Outcomes:

- Demonstrate knowledge of specialty piping, fittings and related components.
- Demonstrate knowledge of the procedures used to measure specialty piping.
- Demonstrate Knowledge of the procedure used to cut and join specialty piping.

2015 Red Seal Occupational Standard Reference:

5.06 Lays out, identifies and installs specialty piping, fittings and related components.
8.06 Sets up riggings, hoisting, lifting and positioning equipment.

Suggested Hours:

12 Hours

Objectives and Content:

Theoretical Objectives

1. Identify codes and regulations pertaining to specialty piping.
 i) ASME B31

2. Interpret information pertaining to specialty piping found on drawings and specifications.

3. Identify types of specialty pipe and describe their applications and procedures for use.
 i) chrome
 ii) molybdenum
 iii) titanium
 iv) duplex
 v) lined pipe

4. Explain the systems of measurement for specialty piping.
 i) dimension
 ii) length
 iii) wall thickness/schedule
5. Identify tools and equipment relating to specialty piping fittings and their components and describe their applications and procedures for use.

6. Identify fittings used with specialty piping and describe their purpose and applications.

7. Identify specialty piping related components and describe their purpose and applications.
 i) bolts
 ii) studs
 iii) gaskets
 iv) brackets
 v) supports
 vi) hangers
 vii) guides
 viii) anchors

8. Identify the joining methods used to join specialty piping and describe their associated procedures.
 i) threading
 ii) tacking/welding
 iii) flanging
 iv) roll grooving

9. Identify the methods used to cut specialty piping and fittings in particular lined piping, and describe their associated procedures.

10. Identify the methods used in cutting, bevelling and threading tools and equipment.

11. Describe the identification systems and methods for specialty piping.

12. Describe the different methods of pipe and fitting end preparation.
 i) standard bevel
 ii) compound bevel

13. Describe pre/post-weld activities.
 i) stress relieving
 ii) cleaning procedures
 iii) controlled cooling
 iv) pre-heating or purging
v) chemical treating
vi) protective coatings

14. Describe the procedures used to inspect specialty piping.
 i) QA/QC requirements

15. Describe the procedures used to measure specialty piping and fittings.
 i) fitting allowance
 ii) offset calculations
 iii) trade math

16. Describe the procedures used to install and test fittings and related components for specialty piping.

17. Describe the procedures and bending tools and equipment used to bend specialty piping.

18. Describe the procedures and methods to prevent cross contamination.
 i) labelling
 ii) physical separation
 iii) barriers tool selection

Practical Objectives

N/A
STM-225 Hydronic Systems

Learning Outcomes:

- Demonstrate knowledge of hydronic systems and equipment, their applications and operation.
- Demonstrate knowledge of hydronic piping configurations, their applications and operation.
- Demonstrate knowledge of the procedures used to install piping and piping components for hydronic systems.
- Demonstrate knowledge of the procedures and testing equipment used to troubleshoot, repair and maintain hydronic systems.

2015 Red Seal Occupational Standard Reference:

12.01 Installs equipment for hydronic systems.
12.02 Installs piping for hydronic systems.
12.03 Tests hydronic systems.
12.04 Maintains, troubleshooting and repairs hydronic systems.

Suggested Hours:

60 Hours

Objectives and Content:

Theoretical Objectives

1. Interpret jurisdictional codes and specifications for installing and testing of hydronic equipment.

2. Interpret information pertaining to hydronic systems found on drawings, specifications and equipment manuals.
 i) installation
 ii) troubleshooting
 iii) testing
 iv) repair
 v) maintenance
3. Identify types of hydronic systems and equipment and describe their purpose and operation.
 i) systems
 - heating
 - cooling
 ii) equipment
 - boilers
 - expansion tanks
 - buffer tanks
 - glycol tanks
 - holding tanks
 - heat exchangers
 - circulating pumps
 - transfer pumps
 - isolators
 - relief valves
 - chemical feeders
 - isolation valves for equipment
 - backflow preventers,
 - pressure reducing valves

4. Identify types of piping and components and accessories for hydronic systems, and describe their purpose and operation.
 i) piping
 - plastic
 - carbon steel
 - stainless steel
 - copper
 ii) components
 - fittings
 - dielectric fittings
 - hangers
 - brackets
 - sleeves
 - anchors
 - guides
 - valves
 - strainers
 - expansion joints
 - expansion loops
 - backflow preventers
5. Identify systems that require pitch and grade of piping for the hydronic system.

6. Identify hydronic equipment supports and fasteners and describe their applications and procedures for use.
 i) supports
 - brackets
 - stands
 - hangers
 - plates
 - housekeeping pads
 - isolator pads
 - concrete embeds
 ii) fasteners
 - anchors
 - expansion type inserts
 - beam clamps
 - nuts
 - bolts
 - screws

7. Identify hydronic controls and describe their purpose and operation.
 i) pressure
 ii) temperature and liquid level controls
 iii) zone valves (motorized)
 iv) safety controls,
 v) LWCO
 vi) high and low limit temperature controls

8. Identify sources of heat and cooling used in hydronic systems.
 i) heat
 - oil
 - gas
 - wood
 - steam
 - geothermal
 - solar
 ii) cooling
 - ground source
 - cooling towers
 - chillers
 - refrigeration
Identify types of heat transfer equipment and describe their characteristics and operation.

i) radiators
ii) convectors
iii) pipe coils
iv) horizontal and vertical unit heaters
v) radiant panels
vi) heat/plate exchangers

Identify types of testing equipment and components and describe their characteristics and applications.

i) blind flanges
ii) calibrated pressure gauges
iii) test pumps
iv) relief valves
v) gate valves
vi) recorders,
vii) testing trees/headers
viii) regulators
ix) multimeter
x) manometer
xi) infrared thermometer
xii) balancing equipment
xiii) chemical testing equipment

Identify types of isolation components and describe their characteristics and applications.

i) spectacle blinds
ii) spades
iii) plugs and caps
iv) temporary spool pieces

Identify method of filling, draining or purging test medium.

i) using hand pump
ii) centrifugal pump
iii) compressors
iv) compressed gas cylinders
13. Identify the considerations for selecting piping components for hydronic systems.
 i) insulation requirements
 ii) type of supports
 iii) shoes and sleeves
 iv) expansion
 v) contraction

14. Describe the procedures used to perform system testing.

15. Describe the procedures used to remove test medium from system.

16. Describe the procedures used to reinstate system.

17. Describe the procedures used to troubleshoot, repair and maintain hydronic systems.

18. Describe the procedures used to complete documentation following hydronic system repair or maintenance.

19. Describe the procedures used to install piping and piping components for hydronic systems.

20. Describe the procedures used to protect hydronic piping and piping components.
 i) protection from mechanical damage
 ii) seismic activity
 iii) environmental conditions

21. Explain the effect of elevation and temperature on pressure when testing hydronic systems.

22. Explain the effects trapped air in a hydronic system will have on testing and describe the procedures to prevent or correct it.

23. Explain the effects of electrolysis when connecting dissimilar metals on hydronic piping and components.

24. Explain the effects of expansion and contraction on piping in hydronic systems.

25. Identify and explain the applications of hydronic piping configurations.
i) perimeter/series loop
ii) reverse return
iii) direct return
iv) primary/secondary

26. Explain the applications and operation of hydronic systems.
 i) residential
 ii) industrial

27. Explain the principles of heat transfer.
 i) radiation
 ii) conduction
 iii) convection

Practical Objectives

1. Install boiler trim and related piping.
STM-230 Heat Tracing Systems (Liquid)

Learning Outcomes:

- Demonstrate knowledge of liquid-filled tracing systems, their applications and operation.
- Demonstrate knowledge of procedures to repair and test liquid-filled tracing systems and their components.

2015 Red Seal Occupational Standard Reference:

7.03 Installs liquid-filled tracing systems.
7.04 Maintains, troubleshoots, repairs and tests liquid-filled tracing systems.

Suggested Hours:

6 Hours

Objectives and Content:

Theoretical Objectives

1. Identify codes, regulations and standards pertaining to liquid-filled tracing systems.

2. Interpret information found on drawings and specifications pertaining to liquid-filled tracing system.

3. Identify tools and equipment relating to liquid-filled tracing systems and describe their applications and procedures for use.

4. Identify types of liquid-filled tracing systems and components and describe their characteristics, operation and applications.
 i) systems
 - low and high temperature hot water
 - glycol
 ii) components
 - valves
 - breakouts
 - valve baskets
- high point vents
- pumps

5. Identify joining methods used to install liquid-filled tracing systems and describe their associated piping practices.
 i) welding
 ii) soldering
 iii) grooving
 iv) crimping
 v) brazing and compression fittings

6. Describe liquid-filled tracing systems and installation variables.
 i) temperature
 ii) pressure
 iii) flow
 iv) functionality

7. Describe procedures used to troubleshoot, test, repair and maintain liquid-filled tracing systems and components.
 i) troubleshoot
 - functional checks
 - visual inspections
 - use of temperature sensing devices
 ii) test
 - hydrostatic
 - pneumatic
 - in service
 iii) repair
 - tubing and fitting replacement
 iv) maintain
 - cleaning
 - inspecting tubing
 - fitting and components for correct operation and wear
 v) defects
 - kinked tubing
 - broken straps
 - faulty pumps
 - plugged vents
8. Describe necessary documentation for liquid-filled tracing system and component repair and maintenance.
 i) QA/QC verification
 ii) recording of signoff that repair has been completed

10. Identify disposal procedures of liquid medium.

Practical Objectives

1. Review working principles of high and low temperature hot water/glycol systems.
STM-235 Electrical Principles

Learning Outcomes:

- Demonstrate knowledge of the basic concepts of electricity.

2015 Red Seal Occupational Standard Reference:

N/A

Suggested Hours:

6 Hours

Objectives and Content:

Theoretical Objectives

1. Define terminology associated with electricity as related to the trade.

2. Identify hazards and describe safe work practices pertaining to electricity.

3. Identify electrical-related information found on drawings and specifications.

4. Identify tools and equipment used to test electrical circuits and describe their applications and procedures for use.

5. Identify and explain Ohm’s law.

6. Identify types of current and describe their characteristics and applications.
 i) direct current (DC)
 ii) alternating current (AC)

7. Identify types of electrical circuits and describe their characteristics, operation and applications.
 i) series
 ii) parallel
 iii) series-parallel

8. Identify types of related electrical equipment and components and describe their characteristics, operation and applications.
Practical Objectives

1. Use a multi-meter.
Level 3
STM-300 Industrial Water and Waste Systems

Learning Outcomes:

- Demonstrate knowledge of industrial water and waste treatment piping configurations, their applications and operation.
- Demonstrate knowledge of the procedures used to install piping, components and supports for industrial water and waste treatment systems.
- Demonstrate knowledge of testing equipment and components for troubleshooting industrial water and waste treatment systems.
- Demonstrate knowledge of the procedures used to troubleshoot, repair and maintain industrial water and waste treatment systems.

2015 Red Seal Occupational Standard Reference:

14.01 Installs equipment for industrial water and waste treatment systems.
14.02 Installs piping for industrial water and waste treatment systems.
14.03 Tests industrial water and waste treatment systems.
14.04 Maintains, Troubleshoots and repairs industrial water and waste treatment systems.
25.01 Secures commissioning area.

Suggested Hours:

24 Hours

Objectives and Content:

Theoretical Objectives

1. Interpret information pertaining to industrial water and waste treatment systems found on drawings, specifications and equipment manuals.
 i) installation
 ii) testing
 iii) troubleshooting
 iv) repair
 v) maintenance

2. Interpret jurisdictional codes and specifications for installation of industrial water and waste treatment systems.
3. Describe the applications and operation of industrial water and waste treatment systems.

4. Explain the effect of pressure on elevation when troubleshooting industrial water and waste treatment systems.

5. Explain the effect of elevation and temperature on pressure when testing industrial water and waste treatment systems.

6. Explain the effects trapped air in industrial water and waste treatment system will have on testing and describe the procedures to prevent or correct it.

7. Explain the effects of electrolysis when connecting dissimilar metals on industrial water and waste treatment piping and components.

8. Identify types of testing equipment and components and describe their characteristics and applications.

9. Identify test medium used in testing of industrial water and waste treatment systems, and describe their characteristics and applications.

10. Identify types of piping, piping components and supports for industrial water and waste treatment systems, and describe their purpose and operation.
 i) piping
 - plastic
 - carbon steel
 - copper
 - stainless steel
 ii) components
 - fittings
 - dielectric fittings
 - hangers, brackets
 - sleeves
 - anchors
 - guides
 - manual and automatic valves
 - strainers
 - backflow preventers
 - check valves
 iii) supports
- rollers
- hangers
- clamps
- brackets
- stands
- anchors
- guides
- concrete piers (underground)

11. Identify types of industrial water and waste treatment systems equipment, and describe their characteristics and operation.
 i) pumps
 ii) tanks
 iii) valves
 iv) filters
 v) strainers
 vi) separators
 vii) skimmers
 viii) aerators
 ix) water treatment equipment

12. Identify industrial water and waste treatment systems equipment supports and fasteners and describe their applications and procedures for use.
 i) stands
 ii) hangers
 iii) plates
 iv) housekeeping pads
 v) isolator pads
 vi) concrete embeds

13. Identify industrial water and waste treatment system control components and describe their purpose and operation.
 i) operating and temperature controls
 ii) flow controls
 iii) safety controls

14. Identify types of isolation components and describe their characteristics and applications.
 i) spectacle blinds
 ii) spades
 iii) plugs and caps
iv) temporary spool pieces

15. Describe the procedures used to install equipment for industrial water and waste treatment systems, their controls, supports and fasteners.

16. Identify and describe the procedures used to fill, drain or purge test medium from system.
 i) medium
 - water
 - compressed air
 - glycol
 - water/glycol mix
 - inert gases
 ii) methods to filling, drain or purge
 - hand pumps
 - centrifugal pumps
 - compressors
 - compressed gas cylinders

17. Describe the procedures used to reinstate system.

18. Describe the procedures used to protect industrial water and waste treatment system piping and piping components
 i) mechanical damage
 ii) seismic activity
 iii) environmental conditions
 iv) contamination

19. Describe the procedures used to troubleshoot, test, repair and maintain industrial water and waste treatment systems.
 i) equipment
 ii) tests
 - hydrostatic
 - pneumatic

20. Describe the procedures used to complete documentation following water and waste treatment system repair or maintenance.

Practical Objectives

N/A
STM-305 Heat Tracing Systems (Steam)

Learning Outcomes:

- Demonstrate knowledge of steam tracing systems, their applications and operation.
- Demonstrate knowledge of the procedures used to install steam tracing systems.
- Demonstrate knowledge of procedures for repairing and testing steam tracing systems and their components.

2015 Red Seal Occupational Standard Reference:

7.01 Installs steam tracing systems.
7.02 Maintains, troubleshoots, repairs and tests steam tracing systems.

Suggested Hours:

12 Hours

Objectives and Content:

Theoretical Objectives

1. Interpret codes, regulations and standards pertaining to steam tracing systems.

2. Interpret information found on drawings and specifications pertaining to steam tracing systems.

3. Identify tools and equipment relating to steam tracing systems and describe their applications and procedures for use.

4. Identify types of steam tracing systems and components and describe their characteristics, operation and applications.
 i) systems
 - low to high pressure
 - pre-insulated tubing bundles
 ii) components
 - valves
 - breakout
 - valve baskets
5. Describe steam tracing systems and installation variables.
 i) temperature
 ii) pressure
 iii) flow
 iv) functionality
 v) systems

6. Identify joining methods used to install steam tracing systems and describe their associated piping practices.
 i) welding
 ii) soldering
 iii) grooving
 iv) crimping
 v) brazing and compression fittings

7. Describe procedures used to troubleshoot, test, repair and maintain steam tracing systems and components.
 i) troubleshoot
 - functional checks
 - visual inspections
 - use of temperature sensing devices and stethoscopes
 ii) tests
 - hydrostatic
 - pneumatic
 iii) repair
 - steam traps
 - tubing replacement
 - fitting replacement
 iv) maintain
 - checking steam straps
 - cleaning
 - inspecting tubing
 - fittings and components for correct operation and wear

8. Identify steam tracing system and component defects requiring repair.
 i) defects
 - kinked tubing
 - passing traps
 - broken straps
9. Describe procedures used to test and repair steam tracing system and components.

10. Describe necessary documentation for steam tracing system and component repair and maintenance.
 i) QA/QC verification
 ii) recording of signoff that repair has been completed

Practical Objectives

1. Perform heat tracing.
STM-310 Hydronic Systems Controls

Learning Outcomes:

- Demonstrate knowledge of hydronic system controls, their applications and operation.
- Demonstrate knowledge of the procedures used to install, maintain, repair, test and troubleshoot hydronic system control.

2015 Red Seal Occupational Standard Reference:

12.01 Installs equipment for hydronic systems.
12.02 Installs piping for hydronic systems.
12.03 Tests hydronic systems.
12.04 Maintains, troubleshoots and repairs hydronic systems.
25.01 Secures commissioning area.

Suggested Hours:

12 Hours

Objectives and Content:

Theoretical Objectives

1. Define terminology associated with hydronic system control.

2. Identify hazards and describe safe work practices pertaining to hydronic system control.

3. Interpret codes and regulations pertaining to hydronic system control.

4. Interpret information pertaining to hydronic system control found on drawings and specifications.

5. Identify tools and equipment relating to hydronic system controls and describe their applications and procedures for use.

6. Identify types of hydronic system controls and components describe their characteristics, applications and operation.
i) operating and temperature controls
ii) safety controls
iii) pressure
iv) temperature and liquid level controls
v) zone valves (motorized)
vi) safety controls
vii) LWCO
viii) high and low limit temperature controls

7. Describe the procedures used to install hydronic system control components.
8. Describe the procedures used to protect hydronic system control components.
9. Describe the procedures used to set and adjust hydronic system control components.
10. Describe the procedures used to troubleshoot, test, repair and maintain hydronic system controls and components.

Practical Objectives

N/A
STM-315 Low Pressure Steam Systems

Learning Outcomes:

- Demonstrate knowledge of the properties of steam.
- Demonstrate knowledge of low pressure steam and condensate piping configurations, their applications and operation.
- Demonstrate knowledge of the procedures used to install piping and piping components for low pressure steam and condensate systems.
- Demonstrate knowledge of testing equipment and components for troubleshooting low pressure steam and condensate systems.
- Demonstrate knowledge of the procedures used to test troubleshoot, repair and maintain low pressure steam and condensate systems.

2015 Red Seal Occupational Standard Reference:

10.01 Installs equipment for low pressure steam and condensate systems.
10.02 Installs piping for low pressure steam and condensation systems.
10.03 Tests low pressure steam and condensate systems.
10.04 Maintains, troubleshoots and repairs low pressure steam and condensate system.

Suggested Hours:

72 Hours

Objectives and Content:

Theoretical Objectives

1. Interpret codes, regulations and standards pertaining to low pressure steam systems
 i) ASME

2. Interpret information pertaining to low pressure steam, and condensate piping found on drawings, specifications and equipment manuals.
 i) installation
 ii) testing
 iii) troubleshooting
 iv) repair
 v) maintenance
3. Identify low pressure steam and condensate system equipment, supports and fasteners and describe their applications and procedures for use.
 i) equipment
 - boilers
 - boiler trim
 - expansion joints
 - pumps
 - heat transfer equipment
 - steam traps
 - tanks
 - valves
 - water treatment equipment
 ii) supports
 - stands
 - hangers
 - plates
 - housekeeping pads
 - isolator pads
 - concrete embeds
 iii) fasteners
 - expansion type inserts
 - beam clamps
 - nuts
 - bolts
 - screws

4. Identify low pressure steam and condensate system controls and components and describe their purpose and operation.
 i) low water cut-offs (LWCO)
 ii) operating pressure control
 iii) feed water level controls
 iv) high limit pressure controls
 v) automatic valves (motorized)

5. Identify types of fuel used in low pressure steam and condensate systems.
 i) fuel oil
 ii) gas
 iii) coal

6. Identify types of heat transfer equipment and describe their characteristics and operation.
7. Identify type of pipe, piping components and piping configurations for low pressure steam and condensate systems, and describe their purpose, operation and applications.

i) configurations
 - parallel flow
 - counter flow
 - two pipe
 - gravity return
 - mechanical return
 - wet or dry return

ii) pipe
 - carbon steel
 - stainless steel
 - copper

iii) components
 - manual and automatic valves
 - steam traps
 - air vents
 - expansion joints
 - strainers
 - check valves

iv) application
 - residential heating
 - industrial
 - commercial and institutional (ICI) heating
 - process heating

8. Identify the considerations for selecting piping system components for low pressure steam and condensate systems.

i) insulation requirements

ii) type of supports

iii) shoes and sleeves
9. Describe the procedures used to protect and restrain low pressure steam and condensate system piping and piping components.
 i) protection from:
 - mechanical damage
 - seismic activity
 - environmental conditions

10. Describe the procedures used to install equipment for low pressure steam and condensate systems, their controls, supports and fasteners.

11. Describe the use of steam tables to identify the relationship between pressure and temperature.

12. Calculate grade and pitch of piping to ensure system efficiency and functionality.

13. Explain the properties of steam.
 i) pressure
 ii) temperature
 iii) latent heat
 iv) sensible heat
 v) total heat
 vi) volume

14. Explain the principles of heat transfer.
 i) radiation
 ii) conduction
 iii) convection

15. Explain the applications and operation of low pressure steam and condensate systems.
 i) heating
 ii) process

16. Explain the effect of pressure on elevation when troubleshooting low pressure steam and condensate systems.

17. Explain the effect of elevation and temperature on pressure when testing low pressure steam and condensate systems.
18. Explain the effects trapped air in a low pressure steam and condensate system will have on testing and describe the procedures to prevent or correct it.

19. Explain the effects of expansion and contraction on piping in low pressure steam and condensate systems.

20. Identify types of testing equipment and components and describe their characteristics and applications.

21. Identify types of isolation components and describe their characteristics and applications.
 i) spectacle blinds
 ii) spades
 iii) plugs and caps
 iv) temporary spool pieces

22. Identify types of system tests and describe their applications and procedures for use.
 i) hydrostatic
 ii) pneumatic
 iii) vacuum

23. Identify test medium used in testing of low pressure steam and condensate systems, and describe their characteristics and applications.

24. Identify method of filling, draining or purging test medium.
 i) medium
 - water
 - water/glycol mix
 - air
 - inert gases
 ii) method of filling, draining or purging
 - using hand pumps
 - centrifugal pumps
 - compressors
 - compressed gas cylinders

25. Describe the procedures used to troubleshoot, repair and maintain low pressure steam and condensate systems.

26. Describe the procedures used to reinstate system.
27. Describe the procedures used to complete documentation following low pressure steam and condensate system repair or maintenance.

Practical Objectives

1. Install a low pressure steam main, unit heaters and associated components.
STM-320

Fuel Systems

Learning Outcomes:

- Demonstrate knowledge of fuel systems, their components, applications and operation.
- Demonstrate knowledge of fuel piping and tubing, their applications and operation.
- Demonstrate knowledge of the procedures used to install equipment, piping and components for fuel systems.
- Demonstrate knowledge of the procedures used to test, troubleshoot, repair and maintain fuel systems.

2015 Red Seal Occupational Standard Reference:

17.01 Installs equipment for fuel systems.
17.02 Installs piping and tubing for fuel systems.
17.03 Tests fuel systems.
17.04 Maintains, troubleshoots and repairs fuel systems.
25.01 Secures commissioning area.

Suggested Hours:

60 Hours

Objectives and Content:

Theoretical Objectives

1. Interpret jurisdictional codes and specifications for installation of fuel systems.

2. Interpret information pertaining to fuel systems testing found on drawings and specifications and equipment manuals.
 i) troubleshooting
 ii) repair
 iii) maintenance

3. Explain the effects of electrolysis when connecting dissimilar metals on fuel piping and components.
4. Explain the effect of elevation and temperature on pressure when testing fuel systems.

5. Explain the effects trapped air in a fuel system will have on testing and describe the procedures to prevent or correct it.

6. Explain the effects of expansion and contraction on piping in fuel systems.

7. Explain the effect of pressure on elevation when troubleshooting fuel systems.

8. Explain the applications and operation of fuel systems.

9. Identify types of fuel systems and describe their characteristics and operation.
 i) natural gas
 ii) propane
 iii) diesel
 iv) fuel oil
 v) black liquor
 vi) hydro-carbon derivatives
 vii) bio fuels

10. Identify equipment, control components, supports and fasteners used in fuel systems, and describe their purpose and operation.
 i) equipment
 - expansion joints
 - pumps
 - heat transfer equipment
 - heat exchangers
 - tanks (may include rail or marine)
 - vacuum breakers
 - valves and blowers
 - flare stacks
 - flashback arrestors
 - scrubbers
 - vaporizers
 ii) equipment supports
 - expansion tanks
 - pumps
 - outdoor controllers
 - control valves
 iii) equipment fasteners
- expansion type inserts
- beam clamps
- nuts
- bolts
- screws

iv) control components
- operating and temperature controls
- safety controls

v) controls
- operating pressure controls
- high limit pressure controls
- pressure relief valves

vi) supports
- stands
- hangers
- plates
- isolator pads
- embeds

11. Identify types of testing equipment and components and describe their characteristics and applications.
i) test tree and components
ii) pressure gauges
iii) pumps
iv) compressors
v) test medium

12. Identify types of piping and tubing, piping components and venting and exhaust components for fuel systems, and describe their purpose and operation.
i) piping and tubing
 - carbon steel
 - copper
 - HDPE
 - stainless steel
 - yellow jacket

ii) piping components
 - heat exchangers
 - pump trim
 - manual and automatic valves
 - expansion joints
 - flexible connectors
- strainers
- check valves

iii) venting and exhaust components
- mufflers
- silencers
- sound attenuation

13. Identify the considerations for selecting piping and tubing components for fuel systems.
 i) insulation requirements
 ii) type of supports
 iii) shoes and sleeves
 iv) expansion
 v) contraction

14. Identify test medium used in testing of fuel systems, and describe their characteristics and applications.
 i) water
 ii) water/glycol mix (appropriate for the piping or system)
 iii) air
 iv) inert gases

15. Identify method of filling, draining or purging test medium.
 i) using hand pump
 ii) centrifugal pump
 iii) compressors
 iv) compressed gas cylinders

16. Identify types of isolation components and describe their characteristics and applications.
 i) blind flanges
 ii) plugs and caps
 iii) temporary spool pieces

17. Describe the procedures used to protect and restrain fuel system piping and components.
 i) protection from mechanical damage
 ii) seismic activity
 iii) environmental conditions
18. Describe the procedures used to reinstate system.

19. Describe the procedures used to troubleshoot, test, repair and maintain fuel systems and components.
 i) verify continuous bonding
 ii) tests
 - hydrostatic
 - pneumatic
 - vacuum

20. Describe the procedures used to install equipment for fuel systems, their controls, supports and fasteners.

21. Describe trenching and shoring requirements.

22. Describe the procedures used to complete documentation following fuel system repair or maintenance explain the applications of fuel piping and tubing.

Practical Objectives

N/A
STM-325 Medical Gas Systems

Learning Outcomes:

- Demonstrate knowledge of medical gas systems, their components, applications and operation.
- Demonstrate knowledge of the procedures used to install equipment for medical gas systems.
- Demonstrate knowledge of test equipment and test medium, their characteristics and applications.
- Demonstrate knowledge of the procedures used to test, troubleshoot, repair and maintain medical gas systems.

2015 Red Seal Occupational Standard Reference:

18.01 Installs equipment for medical gas system.
18.02 Installs piping and tubing for medical gas systems.
18.03 Tests medical gas systems.
18.04 Maintains, trouble shoots and repairs medical gas systems.
25.01 Secures commissioning area.

Suggested Hours:

12 Hours

Objectives and Content:

Theoretical Objectives

1. Interpret information pertaining to medical gas system equipment found on drawings, specifications and equipment manuals.
 i) testing
 ii) troubleshooting
 iii) repair
 iv) maintenance

2. Interpret codes and regulations pertaining to medical gas system piping and tubing.
 i) CSA
 ii) AHJ
iii) site specifications
iv) DISS
v) pin indexing system
vi) joining methods
vii) cleaning
viii) supporting

3. Explain the importance of maintaining cleanliness of installation tools, piping, fittings and equipment.

4. Identify types of medical gases and gas systems and describe their applications and characteristics.
 i) systems
 - oxygen
 - nitrogen
 - vacuum
 - mixed gases
 ii) gases
 - oxygen
 - nitrogen
 - nitrous oxide/anesthetic
 - medical air
 iii) applications
 - hospitals
 - dental suites
 - veterinary clinics
 - laboratories

5. Identify supports and fasteners used for medical gas system equipment and piping and describe their purpose and operation.
 i) supports
 - brackets
 - stands
 - hangers
 - plates
 - isolator pads
 ii) fasteners
 - expansion type inserts
 - beam clamps
 - nuts
 - bolts
6. Identify medical gas connection systems.
 i) diameter index safety system (DISS)
 ii) pin indexing system

7. Identify types of test equipment and describe their characteristics and applications.
 i) test trees and components
 ii) valve boxes
 iii) terminal boxes
 iv) compressors
 v) regulators
 vi) pumps
 vii) cryogenic tanks
 viii) valves
 ix) gauges
 x) alarms,
 xi) test medium

8. Identify types of test medium and describe their characteristics and applications.
 i) nitrogen and system gases

9. Identify types of certification tests and describe their applications.
 i) particulate test
 ii) purification test
 iii) cross-connection test
 iv) operational test

10. Identify medical gas system piping and tubing.
 i) copper certified for medical gas service
 ii) carbon steel
 iii) stainless steel

11. Identify method of purging and filling medical gas systems.
 i) compressors
 ii) compressed gas cylinders

12. Identify types of isolation components and describe their characteristics and applications.
 i) valves
ii) plugs and caps

13. Describe the procedures used to install equipment, piping and tubing for medical gas systems, their supports and fasteners.

14. Describe the procedures used to protect medical gas piping and piping components.
 i) mechanical damage
 ii) seismic activity
 iii) environmental conditions

15. Describe the procedures used to remove test medium from system.

16. Describe the procedures used to reinstate system.

17. Describe the procedures used to troubleshoot, test, repair and maintain medical gas systems and components.

18. Describe the procedures used to complete documentation following medical gas repair or maintenance.

Practical Objectives

N/A
STM-330 Cross Connection Control

Learning Outcomes:

- Demonstrate knowledge of cross connection control devices, their applications and operation.

2015 Red Seal Occupational Standard Reference:

N/A

Suggested Hours:

6 Hours

Objectives and Content:

Theoretical Objectives

1. Define terminology associated with cross connection control.

2. Identify hazards and describe safe work practices pertaining to cross connection control.

3. Identify certification requirements pertaining to cross connection control.

4. Interpret information pertaining to cross connection control devices found on drawings and specifications.

5. Explain backflow and its causes.

6. Identify types of cross connection control devices and describe their characteristics, operation and applications.

Practical Objectives

N/A
STM-335 Instrumentation

Learning Outcomes:

- Demonstrate knowledge of instrumentation devices, their applications and operation.
- Demonstrate knowledge of the procedures used to install instrumentation devices.
- Demonstrate knowledge of the procedures used to install tubing for instrumentation devices.

2015 Red Seal Occupational Standard Reference:

N/A

Suggested Hours:

12 Hours

Objectives and Content:

Theoretical Objectives

1. Define terminology associated with instrumentation.
2. Identify hazards and describe safe work practices pertaining to instrumentation.
3. Interpret codes and regulations pertaining to instrumentation.
4. Interpret information found on drawings and specifications pertaining to instrumentation.
5. Identify tools and equipment relating to instrumentation and describe their applications and procedures for use.
6. Identify types of devices used in instrumentation and describe their characteristics, operation and applications.
7. Identify types of controllers and describe their applications and operation.
8. Identify tubing materials used in instrumentation and describe their characteristics and applications.

9. Describe the procedures used to install instrumentation devices.

10. Describe the procedures used to install controllers.

11. Describe the procedures used to install and support tubing for instrumentation devices.

12. Describe the procedures used to maintain and repair instrumentation systems.

13. Describe the procedures used to test and troubleshoot instrumentation systems.

Practical Objectives

N/A
STM-340 Controlled Bolting and Tensioning

Learning Outcomes:

- Demonstrate knowledge of the principles of torquing and controlled bolting.
- Demonstrate knowledge of torquing procedures for fasteners.

2015 Red Seal Occupational Standard Reference:

N/A

Suggested Hours:

30 Hours

Objectives and Content:

Theoretical Objectives

1. Define terminology associated with controlled bolting and tensioning.

2. Identify hazards and describe safe work practices pertaining to controlled bolting and tensioning.

3. Identify codes and regulations pertaining to controlled bolting and tensioning.

4. Identify tools and equipment associated with controlled bolting and tensioning.

5. Explain the importance of controlled bolting of fasteners.
 i) controlled bolting
 ii) bolt stress

6. Explain the principle of hydraulic tensioning and torquing of fasteners.
 i) torque principle
 ii) hydraulic tensioning equipment
 iii) hydraulic torque wrenches

7. Describe types of fasteners used for joints on piping and vessels.
 i) grades of stud bolts and nuts
 ii) proper lengths of stud bolts
iii) formulas for length of bolts, nuts and wrench sizes
iv) thread lubricants

8. Describe torquing procedures for fasteners.
i) use of torque wrenches for fastening of flanged piping joints
ii) applications of torque patterns on flanges
iii) formulas required for use of equipment
iv) power supplies for different applications
v) safety requirements for use of power supplies in hazardous atmospheres

Practical Objectives

1. Perform hydraulic torquing.
2. Perform hydraulic tensioning.
Level 4
MENT-1802 Workplace Mentoring II
(Nova Scotia Unit of Instruction)

Learning Outcomes:

- Identify and explain strategies for teaching workplace skills.
- Demonstrate strategies to assist in teaching skills in the workplace

Objectives and Content:

1. Describe the impact of your own experiences in teaching skills.
2. Identify the different roles played by a workplace mentor.
3. Describe the six-step approach to teaching skills.
4. Explain the importance of identifying the point of the lesson.
5. Identify how to choose a good time to present a lesson.
6. Explain the importance of linking the lessons.
7. Identify the components of the skill (the context).
8. Describe considerations for demonstrating a skill.
9. Identify types of skill practice.
10. Describe considerations in setting up opportunities for skill practice.
11. Explain the importance of providing feedback.
12. Identify techniques for giving effective feedback.
15. Explain how to adjust a lesson to different situations.

Resources:

- Recommended resource to use in the delivery of this unit:
 www.apprenticeship.nscc.ca/mentoring/apprentice.htm
STM-400 Complex Hoisting, Lifting and Rigging

Learning Outcomes:

- Demonstrate knowledge of hoisting, lifting and rigging and positioning equipment, their applications, limitations and procedures for use.
- Demonstrate knowledge of calculations required when performing advanced hoisting and lifting operations.
- Demonstrate knowledge of the procedures used to perform rigging, hoisting and lifting and positioning operations.

2015 Red Seal Occupational Standard Reference:

9.01 Prepares lift plan for complex and critical rigging, hoisting, lifting and positioning.
9.02 Performs calculations for complex and critical rigging, hoisting, lifting and positioning.
9.03 Selects rigging, hoisting, lifting and positioning equipment for complex and critical lifts.
9.04 Sets up rigging, hoisting, lifting and positioning equipment for complex and critical lifts.
9.05 Performs complex and critical lifts and positioning.

Suggested Hours:

24 Hours

Objectives and Content:

Theoretical Objectives

1. Identify hazards and describe safe work practices pertaining to advanced rigging, hoisting, lifting and positioning operations.
 i) energized power lines
 ii) weather conditions
 iii) live equipment
 iv) ground conditions
 v) multi tag lines

2. Identify documentation required for engineered lifts.
3. Identify complex and critical lifts and describe their application and operation.
 i) multi-crane lifts
 ii) load transferring
 iii) lifts that involve personnel
 iv) lifts over personnel
 v) unbalanced load and positioning load
 vi) engineered lifts

4. Explain the procedures to perform complex and critical lifts and positioning.

5. Perform calculations pertaining to rigging, hoisting, lifting, and positioning.
 i) sling angle
 ii) load/weight
 iii) center of gravity
 iv) SWL

6. Identify documentation required for engineered lifts.

Practical Objectives

1. Develop a sample lift plan.
STM-405 Hydraulic Systems

Learning Outcomes:

- Demonstrate knowledge of hydraulic systems, equipment, their applications and operation.
- Demonstrate knowledge of the procedures used to install hydraulic system equipment, piping, tubing and hoses and their application and operation.
- Demonstrate knowledge of the procedures used to test, troubleshoot, repair and maintain hydraulic systems.

2015 Red Seal Occupational Standard Reference:

15.01 Installs equipment for hydraulic systems.
15.02 Installs piping, tubing and hoses for hydraulic systems.
15.03 Tests hydraulic systems.
15.04 Maintains, troubleshoots and repairs hydraulic systems.
25.01 Secures commissioning area.

Suggested Hours:

12 Hours

Objectives and Content:

Theoretical Objectives

1. Interpret information pertaining to hydraulic systems found on drawings, schematics, specifications and equipment manuals.
 i) piping
 ii) tubing
 iii) hoses
 iv) testing
 v) equipment
 vi) testing
 vii) troubleshooting
 viii) repair
 ix) maintenance
2. Explain the importance of ensuring contaminants do not enter the system when repairing or maintain hydraulic systems.

3. Explain the effects trapped air in a hydraulic system will have on testing and describe the procedures to prevent or correct it.

4. Explain the applications and operation of hydraulic piping systems.

5. Identify and describe types of testing equipment, components and test medium used in testing and describe their characteristics and applications.

6. Identify method of filling, draining or purging test medium.
 i) using hand pumps
 ii) centrifugal pumps
 iii) compressed gas cylinders

7. Identify types of isolation components and describe their characteristics and applications.
 i) spectacle blinds
 ii) spades
 iii) plugs and caps
 iv) temporary spool pieces

8. Identify types of piping, tubing and hoses for hydraulic systems and describe their purpose, operation and considerations for selecting.
 i) systems
 - open loop
 - closed loop
 ii) piping
 - plastic
 - carbon steel
 - copper
 - stainless steel
 iii) considerations
 - type of supports, system pressure, movement of the equipment
 - applications
 - to operate lifting devices, to operate motors

9. Identify types of hydraulic equipment, and describe the procedures for installation.
i) reservoir tanks
ii) pumps
iii) motors
iv) relief valves, fittings, valves, cylinders, pistons, actuators, accumulators
v) fluid coolers
vi) fluid heaters
vii) strainers
viii) filters

10. Identify hydraulic equipment supports, fasteners and controls, their installation, applications and procedures for use.
i) equipment supports
 - stands
 - hangers
 - plates
 - housekeeping pads
 - isolator pads
 - concrete embeds

ii) equipment fasteners
 - inserts
 - beam clamps
 - nuts
 - bolts
 - screws

iii) hydraulic control components
 - operating
 - temperature and pressure controls
 - safety controls
 - valves
 - actuators

iv) controls
 - operating
 - temperature and pressure controls, safety controls, valves
 - actuators

11. Identify types of fluids and fluid-related formulae, and describe their characteristics and applications.

12. Describe the procedures used to troubleshoot, test, repair and maintain hydraulic systems and components.
i) tests
- hydrostatic
- pneumatic

13. Describe the procedures used to reinstate hydraulic systems.

14. Describe the procedures used to complete documentation following hydraulic system repair or maintenance.

15. Describe the procedures used to install and protect piping, tubing and hoses for hydraulic systems.
 i) protection from mechanical damage
 ii) seismic activity
 iii) vibration, environmental conditions

Practical Objectives

N/A
STM-410 Compressed Air and Pneumatic Systems

Learning Outcomes:

- Demonstrate knowledge of compressed air and pneumatic piping configurations, their applications and operation.
- Demonstrate knowledge of the procedures used to install, test, maintain, troubleshoot and repair compressed air and pneumatic systems.

2015 Red Seal Occupational Standard Reference:

19.01 Installs equipment for compressed air and pneumatic systems.
19.02 Installs piping and tubing for compressed air and pneumatic systems.
19.03 Tests compressed air and pneumatic systems.
19.04 Maintains, troubleshoots and repairs compressed air and pneumatic systems.
25.01 Secures commissioning area.

Suggested Hours:

12 Hours

Objectives and Content:

Theoretical Objectives

1. Interpret codes and regulations pertaining to compressed air and pneumatic systems.

2. Interpret information pertaining to compressed air and pneumatic system found on drawings, specifications and equipment manuals.
 i) testing
 ii) troubleshooting
 iii) repair and maintenance

3. Explain the effects trapped air, moisture and particulate in a compressed air and pneumatic system will have on system operation and describe the procedures to prevent or correct it.

4. Explain the effect of elevation and temperature on pressure when testing compressed air and pneumatic systems.
5. Explain the applications and operation of compressed air/pneumatic piping system configurations.
 i) piping
 - branch lines above the horizontal centerline
 ii) applications
 - instrument air
 - utility air
 - process air
 - inert gases used in Industrial settings

6. Explain the effects of expansion and contraction on piping in compressed air and pneumatic systems.

7. Explain the principles of heat transfer.
 i) principles
 - radiation
 - conduction
 - convection

8. Identify types of heat transfer equipment and describe their characteristics and operation.
 i) equipment
 - heat exchangers
 - pipe coils

9. Explain the effects of electrolysis when connecting dissimilar metals on compressed air and pneumatic piping and components.

10. Identify types of testing equipment and describe their characteristics and applications.

11. Identify types of isolation components and describe their characteristics and applications.
 i) spectacle blinds
 ii) spades, plugs and caps
 iii) temporary spool pieces
 iv) lockable block and bleed valves

12. Identify test medium used in testing of compressed air and pneumatic systems, and describe their characteristics and applications.
i) water
ii) air
iii) inert gases

13. Identify and describe methods of filling, draining or purging test medium.
i) hand pumps
ii) centrifugal pumps
iii) compressors
iv) compressed gas cylinders

14. Identify types of piping and piping components and describe their purpose and operation.
i) piping
- carbon steel
- copper, plastic (approved to withstand high pressures)
- galvanized
ii) components
- manual and automatic valves
- fittings
- flexible connectors and hoses
- strainers
- check valves

15. Identify the considerations for selecting piping system components for compressed air and pneumatic systems.
i) suitability of piping material for the application
ii) insulation requirements
iii) type of supports, shoes

16 Identify equipment, controls, supports and fasteners used and describe their purpose and operation.
i) equipment
- compressors
 - piston
 - screw type
 - rotary
 - axial
 - reciprocating
 - vane
- heat transfer equipment
- receiver tanks
- valves
- dryers
- separators
- filters
- lubricators
- compressed gas cylinders
- tanks

ii) controls
- regulators
- solenoids
- actuators
- pressure switches
- flow switches
- alarm switches

iii) supports
- stands, hangers
- plates
- housekeeping pads
- isolator pads
- concrete embeds

iv) fasteners
- expansion type inserts
- beam clamps
- nuts
- bolts
- screws

17. Describe the procedures used to troubleshoot, test, repair and maintain compressed air and pneumatic systems and components.

i) test
- hydrostatic
- pneumatic

18. Describe the procedures used to complete documentation following compressed air and pneumatic system repair or maintenance.

19. Describe the procedures used to install equipment and piping components for compressed air and pneumatic systems.
20. Describe the procedures used to protect compressed air and pneumatic piping and piping components.
 i) from mechanical damage
 ii) seismic activity
 iii) environmental conditions

21. Describe the procedures used to reinstate system.

Practical Objectives

N/A
STM-415 High Pressure Steam Systems

Learning Outcomes:

- Demonstrate knowledge of the properties of steam.
- Demonstrate knowledge of high pressure steam and condensate piping, their applications and operation.
- Demonstrate knowledge of the procedures used to install piping and piping components for high pressure steam and condensate systems.
- Demonstrate knowledge of testing equipment and components for troubleshooting high pressure steam and condensate systems.
- Demonstrate knowledge of the procedures used to troubleshoot, repair and maintain high pressure steam and condensate systems.

2015 Red Seal Occupational Standard Reference:

11.01 Installs equipment for high pressure steam and condensate systems.
11.02 Installs piping for high pressure steam and condensate systems.
11.03 Tests high pressure steam and condensate systems.
11.04 Maintains, troubleshoots and repairs high pressure steam and condensate systems.
25.01 Secures commissioning area.

Suggested Hours:

60 Hours

Objectives and Content:

Theoretical Objectives

1. Interpret information pertaining to high pressure steam and condensate systems, piping and equipment found on drawings, specifications and equipment manuals.
 i) troubleshooting
 ii) testing
 iii) repair
 iv) maintenance

2. Explain the applications and operation of high pressure steam and condensate systems.
i) power generation
ii) process
iii) central heating

3. Explain the effect of elevation and temperature on pressure when testing high pressure steam and condensate systems.

4. Explain the properties of steam and heat transfer.
 i) heat transfer
 - radiation
 - conduction
 - convection
 ii) steam
 - pressure
 - temperature
 - latent heat
 - sensible heat
 - total heat
 - superheat
 - volume

5. Explain the effects trapped air in a high pressure steam and condensate system will have on testing and describe the procedures to prevent or correct it.

6. Explain the effect of pressure on elevation when troubleshooting high pressure steam and condensate systems.

7. Explain the applications of high pressure steam and condensate piping.

8. Explain the effects of expansion and contraction on piping in high pressure steam and condensate systems.

9. Identify test medium used in testing of high pressure steam and condensate systems, and describe their characteristics and applications.
 i) water
 ii) water/glycol mix

10. Identify method of filling, draining or purging test medium.
 i) using pumps
 ii) using high pressure water supply hoses
11. Identify types of isolation components and describe their characteristics and applications.
 i) spectacle blinds
 ii) spades
 iii) plugs and caps
 iv) temporary spool pieces

12. Identify types of testing equipment and components and describe their characteristics and applications.

13. Identify types of pipe and piping components for high pressure steam and condensate systems, and describe their purpose and operation.
 i) piping
 - chrome
 - carbon steel
 - stainless steel
 ii) components
 - manual and automatic valves
 - steam traps
 - expansion joints
 - strainers
 - check valves

14. Identify the considerations for selecting piping components for high pressure steam and condensate systems.

15. Identify types of high pressure steam and condensate system equipment, and describe their characteristics and operation.
 i) boilers
 ii) boiler trim
 iii) expansion joints
 iv) pumps
 v) heat transfer equipment
 vi) steam traps
 vii) valves, flash tanks
 viii) superheaters
 ix) re-heaters
 x) de aerators
 xi) desuperheaters
 xii) condensers
 xiii) water treatment equipment
16. Identify types of fuel used in high pressure steam and condensate systems.
 i) fuel oil
 ii) gas
 iii) coal
 iv) biomass
 v) nuclear

17. Identify sources of cooling used in high pressure steam and condensate system.
 i) cooling towers
 ii) condensers
 iii) flash tanks
 iv) blowdown tanks
 v) converters

18. Identify types of heat transfer equipment and describe their characteristics and operation.
 i) converters
 ii) turbines
 iii) radiators
 iv) convectors
 v) pipe coils
 vi) horizontal and vertical unit heaters

19. Identify equipment, controls and components, supports and fasteners used in high pressure steam and condensate systems, and describe their purpose and operation.
 i) supports
 - stands
 - hangers
 - plates
 - housekeeping pads
 - isolator pads
 - concrete embeds
 ii) fasteners
 - expansion type inserts
 - beam clamps
 - nuts
 - bolts
 - screws
 iii) control
 - LWCO
- operating pressure controls
- high limit pressure controls
- safety controls
- feed water controls

20. Identify types of tests and describe their applications
 i) hydrostatic
 ii) pneumatic

21. Describe the use of steam tables to identify the relationship between pressure and temperature.

22. Describe the procedures used to install equipment and piping and piping components for high pressure steam and condensate systems, their controls, supports and fasteners.

23. Describe the procedures used to protect and restrain high pressure steam and condensate system piping and piping components.

24. Describe the procedures used to troubleshoot, test, repair and maintain high pressure steam and condensate systems and components.

25. Describe the procedures used to complete documentation following high pressure steam and condensate system repair or maintenance.

26. Describe the procedures used to reinstate system.

27. Calculate grade and pitch of piping to ensure system efficiency and functionality.

Practical Objectives

N/A
STM-420 Refrigeration Systems

Learning Outcomes:

- Demonstrate knowledge of refrigeration systems, their components, applications and operation.
- Demonstrate knowledge of the procedures used to install equipment, piping and piping components for refrigeration systems.
- Demonstrate knowledge of the procedures used to test associated components of refrigeration systems.
- Demonstrate knowledge of the procedures used to maintain, troubleshoot and repair associated components of refrigeration systems.

2015 Red Seal Occupational Standard Reference:

16.01 Installs equipment for HVACR systems.
16.02 Installs hydronic piping and refrigeration tubing for HVACR systems.
16.03 Tests associated components of HVACR systems.
16.04 Maintains, troubleshoots and repairs associated components of HVACR systems.
25.01 Secures commissioning area.

Suggested Hours:

18 Hours

Objectives and Content:

Theoretical Objectives

1. Interpret information pertaining to refrigeration equipment and piping found on drawings and specifications.

2. Interpret codes and regulations pertaining to refrigeration systems.

3. Identify types of refrigeration systems, components and equipment and describe their characteristics and applications.
 i) systems
 ii) components
iii) applications

4. Identify refrigeration equipment supports and fasteners and describe their operation, applications, purpose and procedures for use.
 i) supports
 ii) fasteners

5. Describe the procedures used to install equipment, controls, supports and fasteners for refrigeration systems.

6. Identify refrigeration control components and describe their purpose and operation.
 i) operating and temperature controls
 ii) safety controls

7. Identify types of refrigeration piping and tubing.
 i) carbon steel
 ii) copper
 iii) alloys

8. Describe the procedures used to install piping and components for refrigeration systems.

9. Explain the applications and operation of refrigeration systems and of refrigeration piping configurations.

10. Identify sources of energy used in refrigeration systems.

11. Explain the principles of heat transfer.
 i) radiation
 ii) conduction
 iii) convection

12. Identify the properties and characteristics of refrigerants.
 i) CFCs
 ii) HCFCs

13. Explain the effects of electrolysis when connecting dissimilar metals on refrigeration piping and components.
14. Explain the effects of expansion and contraction on piping in refrigeration systems.

15. Explain the effects of trapped air in refrigeration piping systems and describe the procedures to prevent it.

16. Identify the considerations for selecting piping system components for refrigeration systems.

17. Describe the procedures used to test refrigeration systems and control components.

18. Identify types of tests and describe their applications.

19. Identify test medium used in testing of refrigeration systems, and describe their characteristics and applications.

20. Identify method of filling, draining, removing or purging test medium.

21. Identify types of isolation components and describe their characteristics and applications.

22. Explain the effects trapped air in components of a refrigeration system will have on testing and describe the procedures to prevent or correct it.

23. Describe the procedures used to reinstate system.

24. Describe the procedures used to troubleshoot, maintain and repair associated components of refrigeration systems.

25. Describe the procedures used to protect associated components of refrigeration systems and piping and piping components.
 i) vibration
 ii) mechanical damage
 iii) seismic activity
 iv) environmental conditions
26. Describe the procedures used to set and adjust associated components of refrigeration systems.

Practical Objectives

N/A
STM-425 Heat Recovery Systems

Learning Outcomes:

- Demonstrate knowledge of heat recovery systems, equipment and components and their applications and operation.
- Demonstrate knowledge of the procedures used to install piping and components and equipment for heat recovery systems.
- Demonstrate knowledge of heat recovery piping configurations, their applications and operation.
- Demonstrate knowledge of system testing and the procedures used to test heat recovery systems.
- Demonstrate knowledge of the procedures used to troubleshoot, test, repair and maintain heat recovery systems and components.

2015 Red Seal Occupational Standard Reference:

23.01 Installs equipment for heat recovery systems.
23.02 Installs piping for heat recovery systems.
23.03 Tests heat recovery systems.
23.04 Maintains, troubleshoots and repairs heat recovery systems.
25.01 Secures commissioning area.

Suggested Hours:

15 Hours

Objectives and Content:

Theoretical Objectives

1. Interpret information pertaining to heat recovery system and equipment found on drawings and specifications.

2. Interpret information pertaining to heat recovery system found on drawings, specifications and equipment manuals.

3. Identify types of heat recovery equipment and control components and describe their characteristics and operation.
 i) equipment
 - expansion joints
- pumps
- heat transfer equipment
 - rooftop units
- heat exchangers
- tanks
- valves
- water treatment equipment

ii) control components
- operating and temperature controls
- safety controls

4. Identify heat recovery equipment, controls, supports and fasteners and describe their applications and procedures for use.

i) supports
- stands
- hangers
- plates
- housekeeping pads
- isolator pads
- concrete embeds

ii) fasteners
- expansion type inserts
- beam clamps
- nuts
- bolts
- screws

iii) different temperature controllers

iv) flow switches

v) motorized zone valves

vi) sensors

5. Identify sources of heat used in heat recovery systems.

i) gland seals

ii) refrigerant gases

iii) exhaust steam

iv) flash steam

v) waste water

vi) cooling water

vii) heat recovery ventilators (HRV)
 - pre-heat coils
 - exhaust steam coils
6. Identify types of isolation components and describe their characteristics and applications.

7. Identify types of heat transfer and heat recovery equipment and describe their characteristics, principles and operation.
 i) heat transfer equipment
 - radiators
 - con vectors
 - pipe coils
 - horizontal and vertical unit heaters
 - radiant panels
 - heat exchangers
 ii) principles of heat transfer
 - radiation
 - conduction
 - convection

8. Identify types of testing equipment and components and describe their characteristics and applications.

9. Identify test medium used in testing of heat recovery systems, and describe their characteristics and applications.

10. Identify method of filling, draining or purging test medium.

11. Identify types of piping and piping components for heat recovery systems, and describe their purpose and operation.
 i) piping components
 - heat exchangers
 - pump trim
 - manual and automatic valves
 - expansion joints
 - flexible connectors
 - strainers
 - check valves

12. Identify the considerations for selecting piping system components for heat recovery systems.
 i) insulation requirements
 ii) type of supports
 iii) shoes and sleeves
iv) expansion
v) contraction

13. Explain the effect of elevation and temperature on pressure when testing heat recovery systems.

14. Explain the effects trapped air in a heat recovery piping system and describe the procedures to prevent or correct it.

15. Explain the applications of heat recovery piping configurations.
 i) open loop
 ii) closed loop

16. Explain the effects of electrolysis when connecting dissimilar metals on heat recovery piping and components.

17. Explain the effects of expansion and contraction on piping in heat recovery systems.

18. Explain the applications and operation of heat recovery systems.

19. Describe the procedures used to install piping and components, equipment for heat recovery systems, their controls, supports and fasteners.

20. Describe the procedures used to troubleshoot, test, repair, and maintain heat recovery systems.

21. Describe the procedures used to complete documentation following heat recovery systems system repair or maintenance.

22. Describe the procedures used to reinstate system.

23. Describe the procedures used to protect and restrain heat recovery system piping and components.
 i) protection from mechanical damage
 ii) seismic activity
 iii) environmental conditions

24. Calculate pitch or grade in order to ensure system efficiency and functionality
Practical Objectives

N/A
STM-430 Geo-Exchange and Geothermal Systems

Learning Outcomes:

- Demonstrate knowledge of geo-exchange and geothermal piping configurations, their applications and operation.
- Demonstrate knowledge of geo-exchange and geothermal equipment, their applications and operations.
- Demonstrate knowledge of the procedures used to install geo-exchange and geothermal system equipment and piping.
- Demonstrate knowledge of testing equipment and components for troubleshooting geo-exchange and geothermal systems.
- Demonstrate knowledge of the procedures used to test, troubleshoot, repair and maintain geo-exchange and geothermal systems.

2015 Red Seal Occupational Standard Reference:

21.01 Installs equipment for geo-exchange and geothermal systems.
21.02 Installs piping for geo-exchange and geothermal systems.
21.03 Tests geo-exchange and geothermal systems.
21.04 Maintains, troubleshoots and repairs geo-exchange and geothermal systems.
25.01 Secures commissioning area.

Suggested Hours:

12 Hours

Objectives and Content:

Theoretical Objectives

1. Interpret information pertaining to geo-exchange and geothermal equipment and piping found on drawings and specifications.

2. Interpret information pertaining to geo-exchange and geothermal system found on drawings, specifications and equipment manuals.
 i) testing
 ii) troubleshooting
 iii) repair
 iv) maintenance
3. Identify types of geo-exchange and geothermal equipment, supports and fasteners and describe their purpose, characteristics and operation.
 i) equipment
 - expansion joints
 - pumps
 - heat transfer equipment
 - steam traps
 - tanks
 - valves
 - water treatment equipment
 ii) supports
 - expansion tanks
 - pumps
 - outdoor controllers
 - control valves
 - stands
 - hangers
 - plates
 - isolator pads
 - embeds
 iii) fasteners
 - expansion type inserts
 - beam clamps
 - nuts
 - bolts
 - screws

4. Identify sources of heat and cooling used in geo-exchange and geothermal systems.
 i) heat
 - deep earth
 - ground source
 ii) cooling
 - ground source
 - cooling towers
 - chillers
 - refrigeration
 - heat exchangers

5. Identify hazards associated with heat transfer fluid.
6. Identify piping configurations for earth loops.

7. Identify purpose and functionality of reversing valve within heat pump.

8. Identify difference in operation of Direct Expansion (DX) system.

9. Identify types of isolation components and describe their characteristics and applications.

10. Identify types of tests, testing equipment and components and describe their applications.

11. Identify test medium used in testing of geo-exchange and geothermal systems, and describe their characteristics and applications.

12. Identify method of filling, draining or purging test medium.

13. Identify types of piping and piping components for geo-exchange and geothermal systems, and describe their purpose and operation.

 i) piping types
 - carbon steel
 - copper
 - HDPE
 - PEX
 - PEX-AL-PEX

 ii) piping components
 - heat exchangers
 - pump trim
 - manual and automatic valves
 - expansion joints
 - strainers
 - check valves

14. Identify the considerations for selecting piping system components for geo-exchange and geothermal systems.

 i) domestic hot water heating
 ii) hydronic heating and cooling
 iii) radiant heating
 iv) open loop
 v) closed loop
 vi) horizontal loop
vii) vertical loop

15. Identify types and principles of heat transfer equipment and controls and describe their characteristics and operation.

 i) evaporators
 ii) compressors
 iii) condensers
 iv) metering devices
 v) refrigerant controls
 vi) related piping

17. Explain the applications of geo-exchange and geothermal piping configurations.
 i) residential heating
 ii) Industrial heating
 iii) process

18. Explain the effects of electrolysis when connecting dissimilar metals on geo-exchange and geothermal piping and components.

19. Explain the effects of expansion and contraction on piping in geo-exchange and geothermal systems.

20. Explain the effects of elevation and temperature on pressure when testing geo-exchange and geothermal systems.

21. Explain the effects of trapped air in a geo-exchange and geothermal system will have on testing and describe the procedures to prevent it or correct it.

22. Explain the effects of pressure on elevation when troubleshooting geo-exchange and geothermal systems.

23. Describe the procedures used to reinstate system.

24. Describe the procedures used to protect and restrain geo-exchange and geothermal system piping and components.
 i) protection from mechanical damage
 ii) seismic activity
 iii) environmental conditions
25. Describe the procedures used to troubleshoot, test, repair, and maintain geo-exchange and geothermal systems.

26. Describe the procedures used to complete documentation following geo-exchange and geothermal systems repair or maintenance.

27. Describe the procedures used to install piping, components and equipment for geo-exchange and geothermal systems, their controls, supports and fasteners.

Practical Objectives

N/A
STM-435 Solar Heating Systems

Learning Outcomes:

- Demonstrate knowledge of solar heating systems, equipment, their components, applications and operation.
- Demonstrate knowledge of solar piping configurations, their applications and operation.
- Demonstrate knowledge of the procedures used to install piping and components for solar heating systems.
- Demonstrate knowledge of diagnostic and testing equipment for troubleshooting solar heating systems.
- Demonstrate knowledge of the procedures used to install, test, troubleshoot, repair and maintain solar heating systems.

2015 Red Seal Occupational Standard Reference:

22.01 Installs equipment for solar heating systems.
22.02 Installs piping for solar heating systems.
22.03 Tests solar heating systems.
22.04 Maintains, troubleshoots and repairs solar heating systems.
25.01 Secures commissioning area.

Suggested Hours:

15 Hours

Objectives and Content:

Theoretical Objectives

1. Interpret information pertaining to solar heating systems and equipment found on drawings, specifications and equipment manuals.
 i) troubleshooting
 ii) repair
 iii) maintenance

2. Identify types of solar heating systems and describe their characteristics and applications.
3. Identify types of testing equipment and components and describe their characteristics and applications.

4. Identify types of solar equipment, and describe their characteristics and operation.
 i) solar collectors
 - flat plate
 - evacuated tube
 ii) indirect water heats
 iii) heat dissipaters
 iv) controls expansion joints
 v) pumps
 vi) heat transfer equipment tanks
 vii) tanks
 viii) valves
 ix) water treatment equipment

5. Identify types of solar heating systems, and describe their characteristics and operation.
 i) domestic water heating
 ii) space heating
 iii) direct and indirect systems
 iv) closed loop systems

6. Identify solar control components and describe their applications and procedures for use.
 i) operating and temperature controls
 ii) safety control

7. Identify solar equipment controls, supports and fasteners and describe their applications and procedures for use.
 i) controls
 - differential temperature controllers
 - flow switches
 - motorized zone valves
 - sensors
 ii) supports
 - expansion tanks
 - pumps
 - collector rackings
 - outdoor controllers
- control valves
- hangers
- stands
- plates
- isolator pads
- embeds

iii) fasteners
- expansion type inserts
- beam clamps
- nuts
- bolts
- screws

8. Identify sources of heat used in solar heating systems.
 i) solar radiation

9. Identify types of isolation components and describe their characteristics and applications.

10. Identify test medium used in testing of solar heating systems, and describe their characteristics and applications.

11. Identify method of filling, draining or purging test medium.

12. Identify the considerations for selecting piping system components for solar heating systems.
 i) insulation requirements
 ii) types of supports
 iii) shoes and sleeves
 iv) expansion
 v) contraction

13. Identify systems that require grade.

14. Identify hazards related to heat transfer fluid.

15. Identify codes and standards for solar heating systems.

16. Identify types of heat transfer equipment and describe their characteristics and operation.
 i) radiators
ii) convecors
iii) pipe coils
iv) horizontal and vertical unit heaters
v) radiant panels
vi) solar collectors
 - flat plate
 - evacuated tube
vii) water heaters
viii) heat dissipaters
ix) heat exchangers

17. Identify types of piping and piping components for solar heating systems, and describe their purpose and operation.
i) piping types
 - carbon steel
 - copper
 - HDPE
 - PEX
 - PEX-AL-PEX
ii) piping components
 - heat exchangers
 - pump trim
 - manual and automatic valves
 - expansion joints
 - strainers
 - check valves

18. Explain the effects trapped air in a solar heating system will have on system operation and describe the procedures to prevent or correct it.

19. Explain the effect of elevation and temperature on pressure when testing solar heating systems.

20. Explain the effects of electrolysis when connecting dissimilar metals on solar piping and components.

21. Explain the effects of expansion and contraction on piping in solar heating systems.

22. Explain the applications and operation of solar heating systems.
23. Explain the principles of heat transfer.
 i) radiation
 ii) conduction
 iii) convection

24. Describe the procedures used to troubleshoot, test, repair and maintain solar heating systems and components.

25. Describe the procedures used to reinstate system.

26. Describe the procedures used to complete documentation following solar heating system repair or maintenance.

27. Describe the procedures used to install equipment, piping and components for solar heating systems, their controls, supports and fasteners.

28. Describe the procedures used to protect and restrain solar heating system piping and components.
 i) protection from mechanical damage
 ii) seismic activity
 iii) environmental conditions

Practical Objectives

N/A
STM-440 Process Piping Systems

Learning Outcomes:

- Demonstrate knowledge of process piping system equipment, their applications and operation.
- Demonstrate knowledge of the procedures used to install piping and piping components for process piping systems.
- Demonstrate knowledge of testing equipment and components for troubleshooting process piping systems.
- Demonstrate knowledge of the procedures used to test, troubleshoot, repair and maintain process piping systems.

2015 Red Seal Occupational Standard Reference:

13.01 Installs equipment for process piping systems.
13.02 Installs piping for process piping systems.
13.03 Tests process piping systems.
13.04 Maintains, troubleshoots and repairs process piping systems.
25.01 Secures commissioning area.

Suggested Hours:

18 Hours

Objectives and Content:

Theoretical Objectives

1. Interpret jurisdictional codes and specifications for installation of process piping systems.

2. Interpret information pertaining to process piping systems and equipment found on drawings, specifications and equipment manuals.
 i) testing
 ii) troubleshooting
 iii) repair
 iv) maintenance

3. Identify types of process piping systems and describe their characteristics and applications.
i) gas/oil refining
ii) pulp production
iii) mining
iv) food processing
v) chemical production
vi) ship building
vii) sawmills
viii) manufacturing
ix) Industrial processes

4. Identify types of testing equipment and components and describe their characteristics and applications.

5. Identify test medium used in testing of process piping systems, and describe their characteristics and applications.

6. Identify method of filling, draining or purging test medium.

7. Identify types of isolation components and describe their characteristics and applications.

8. Identify the considerations for selecting piping system components for process piping systems.
 i) client requirements
 ii) insulation requirements
 iii) types of supports
 iv) shoes and sleeves
 v) expansion
 vi) contraction

9. Identify types of pipe and piping components for process piping systems, and describe their purpose and operation.
 i) piping
 - carbon steel
 - copper
 - chrome
 - plastic
 - fiberglass
 - titanium
 - copper-nickel
 - stainless steel
ii) piping components
 - manual and automatic valves
 - fittings
 - expansion joints
 - strainers
 - filters
 - check valves

10. Identify process piping system equipment supports and fasteners and describe their applications and procedures for use.
 i) supports
 - stands
 - hangers
 - plates
 - housekeeping pads
 - isolator pads
 - concrete embeds
 ii) fasteners
 - expansion type inserts
 - beam clamps
 - nuts
 - bolts
 - screws

11. Identify process piping system controls and describe their purpose and operation.
 i) operating and temperature controls
 ii) flow meters
 iii) liquid level controls
 iv) safety controls

12. Explain the effect of pressure on elevation when troubleshooting process piping systems.

13. Explain the effects trapped air in a process piping system will have on system operation and describe the procedures to prevent or correct it.

14. Explain the effect of elevation and temperature on pressure when testing process piping systems.
15. Explain the effects of electrolysis when connecting dissimilar metals on process piping system piping and piping components.

16. Explain the effects of expansion and contraction on piping in process piping systems.

17. Explain the applications and operation of process piping systems.

18. Describe the procedures used to test, troubleshoot, repair and maintain process piping systems.

19. Describe the procedures used to complete documentation following process piping system repair or maintenance.

20. Describe the procedures used to reinstate system.

21. Describe the procedures used to install equipment for process piping systems, their controls, supports and fasteners.

22. Describe the procedures used to install piping and piping components for process piping systems.

23. Describe the procedures used to protect process piping and piping components.

Practical Objectives

N/A
STM-445 System Testing and Commissioning

Learning Outcomes:

- Demonstrate knowledge of system flushing and chemical treatment procedures.
- Demonstrate knowledge of system inspection, start-up and system commissioning and its associated procedures.
- Demonstrate knowledge of repair and replacement procedures.

2015 Red Seal Occupational Standard Reference:

24.01 Flushes system.
24.02 Chemically treats system.
24.03 Pre-checks system for commissioning.
24.04 Selects and connects commissioning.
25.01 Secures commissioning area.
25.02 Pressurizes system.
25.03 Inspects system.
25.04 Corrects faulty conditions.
25.05 Participates in start-up and turnover procedures.

Suggested Hours:

12 Hours

Objectives and Content:

Theoretical Objectives

1. Identify piping and equipment in system being inspected.

2. Identify types of testing equipment and components and describe their characteristics and applications.
 i) test tree and components
 ii) pressure gauges
 iii) pumps
 iv) compressors
 v) test medium

3. Identify test medium used in testing of piping systems, and describe their characteristics and applications.
i) water
ii) water/glycol mix
iii) air
iv) inert gases

4. Identify types of testing equipment and components and describe their characteristics and applications.
 i) blind flanges
 ii) calibrated pressure gauges
 iii) test pumps
 iv) relief valves
 v) gate valves, recorders
 vi) testing trees.headers

5. Identify hazards and describe safe work practices pertaining to system commissioning and inspection, repair and start-up.
 i) system isolation
 ii) lock out procedures
 iii) testing medium
 iv) system re-energizing
 v) procedures for removal of lock-outs
 vi) safe handling of system medium

6. Identify sources of information pertaining to repair, flushing, commissioning, system inspection and start-up.
 i) specifications
 ii) drawings
 iii) operating conditions

7. Identify tools and equipment relating to system inspection, system flushing, system commissioning, repair and start-up and describe their applications and procedures for use.
 i) flushing
 ii) chemical treating
 iii) start-up and documentation
 iv) reinstatement after testing

8. Identify types of flushing medium and describe their applications.

9. Identify jurisdictional codes and specifications for chemical treatment and disposal of medium.
10. Identify methods for charging systems to operating design pressure.

11. Identify permits and approvals required to perform pressurization.

12. Identify piping and equipment in system being inspected, repaired and started up.

13. Identify method of filling, draining, removing or purging test medium.
 i) using hand pumps
 ii) centrifugal pumps
 iii) compressors
 iv) compressed gas cylinders

14. Identify types of isolation components and describe their characteristics and applications.
 i) blind flanges
 ii) plugs and caps
 iii) temporary spool pieces

15. Describe the procedures used to select and connect commissioning equipment.

16. Describe the procedures used to perform start-up, preform pre-checks, repairs, pressurization and system flushing.
 i) system isolation
 ii) check of equipment
 iii) piping for location and orientation
 iv) selection and connection of test equipment
 v) system pressurization
 vi) system inspection and correction of leaks
 vii) documentation
 viii) removal of test equipment
 ix) filling
 x) venting
 xi) increasing pressure in a controlled manner

17. Describe the procedures used to perform chemical treatments.
Practical Objectives

N/A
STM-450

Job Planning

Learning Outcomes:

- Demonstrate knowledge of the procedures used to plan and organize work.
- Demonstrate knowledge of project costs and efficient trade practices.

2015 Red Seal Occupational Standard Reference:

3.01 Plans work.

Suggested Hours:

6 Hours

Objectives and Content:

Theoretical Objectives

1. Identify sources of information relevant to work planning.
 i) documentation
 ii) drawings
 iii) related professionals
 iv) clients

2. Describe the considerations for determining job requirements.
 i) personnel
 ii) tools and equipment
 iii) materials
 iv) permits

3. Describe the procedures used to plan work.
 i) scheduling
 ii) estimating

4. Describe the procedures used to organize and maintain inventory.

5. Identify work methods and planning to maximize practices that are most efficient while maintaining commitment to safety.

6. Calculate labour and time costs.
7. Calculate material costs and wastage.

Practical Objectives

N/A
STM-455 Quality Control

Learning Outcomes:

- Demonstrate knowledge of quality control and its applications.
- Demonstrate knowledge of procedures used to complete quality control documentation.

2015 Red Seal Occupational Standard Reference:

3.05 Performs quality control functions.

Suggested Hours:

6 Hours

Objectives and Content:

Theoretical Objectives

1. Identify hazards and safe work practices pertaining to quality control.

2. Interpret information pertaining to quality control found on drawings and specifications.

3. Identify tools and equipment relating to quality control.

4. Identify methods of NDE.
 i) hydrostatic
 ii) pneumatic
 iii) visual
 iv) dye penetrate
 v) magnetic particle
 vi) x-ray
 vii) ultrasonic

5. Identify methods of heat treatment and stress relief.

6. Identify types of QC documentation and describe their applications.
 i) manuals
 ii) daily reports
iii) mill test reports
iv) welders logs
v) torque sheet
vi) bolt tensioning sequence
vii) punch list
viii) valve charts

Practical Objectives

N/A
STM-460 Program Review

Learning Outcomes:

- Demonstrate knowledge of the Red Seal Occupational Standard and its relationship to the Interprovincial Examination.
- Demonstrate knowledge of overall comprehension of the trade in preparation for the Interprovincial Examination.

Entire Red Seal Occupational Standard (RSOS)

Suggested Hours:

30 Hours

Objectives and Content:

Theoretical Objectives

1. Define terminology associated with an RSOS.
 i) levels
 ii) tasks
 iii) sub-tasks

2. Explain how an RSOS is developed and the link it has with the Interprovincial Red Seal Examination.
 i) development
 ii) validation
 iii) level and task weighting
 iv) examination breakdown (pie-chart)

3. Identify Red Seal products and describe their use for preparing for the Interprovincial Red Seal Examination.
 i) Red Seal website
 ii) examination preparation guide
 iii) sample questions
 iv) examination counselling sheets

4. Explain the relationship between the RSOS and the AACS.
5. Review Common Occupational Skills for the Steamfitter/Pipefitter trade as identified in the RSOS.
 i) safety-related functions
 ii) tools and equipment
 iii) organizes job

6. Review process to perform layout, fabrication and piping installation for the Steamfitter/Pipefitter trade as identified in the RSOS.
 i) fabrication
 ii) piping, tubing and related components
 iii) test valves
 iv) heat tracing systems

7. Review process to perform common and complex rigging, hoisting and lifting positioning for the Steamfitter/Pipefitter trade as identified in the RSOS.

8. Review process to install, test, maintain, troubleshoot and repair low and high pressure steam and condensate system for the Steamfitter/Pipefitter trade as identified in the RSOS.

9. Review process to install, test, maintain, troubleshoot and repair heating, cooling and process piping systems for the Steamfitter/Pipefitter trade as identified in the RSOS.
 i) hydronic system
 ii) process piping system
 iii) industrial water and waste treatment systems
 iv) hydraulic systems
 v) heating, ventilation, air conditioning and refrigeration systems
 vi) fuel systems
 vii) medical gas systems
 viii) compressed air and pneumatic systems
 ix) fire protection (not common core)

10. Review process to install, test, maintain, troubleshoot and repair renewable energy systems for the Steamfitter/Pipefitter trade as identified in the RSOS.
 i) geo-exchange and geothermal systems
 ii) solar heating systems
 iii) heat recovery systems

11. Review process to perform commissioning, start-up and turnover for the Steamfitter/Pipefitter trade as identified in the RSOS.
Practical Objectives

N/A

Suggested Learning Activities:

1. Conduct a mock certification exam to be used for diagnostic purposes.
2. Review the National Occupational Analysis.
3. Review the Apprentice Logbook.
4. Review the Exam Preparation information found on the homepage at www.nsapprenticeship.ca
5. Conduct a final mock certification exam.

Resources:

These are the recommended resources to use in the delivery of this unit:

- Exam Preparation information, including videos, occupational analyses, exam counseling sheets, practice exams and sample questions, and other study materials and resources, can be found on the www.nsapprenticeship.ca homepage under Exam Preparation.
- Apprentice’s personal logbook
- Applicable codes and regulations
- Program texts

Evaluation: pass/fail
Feedback and Revisions

This AACS will be amended periodically; comments or suggestions for improvements should be directed to:

New Brunswick:
Apprenticeship and Occupational Certification
Post-Secondary Education, Training and Labour
470 York St., Rm. 110, PO Box 6000
Fredericton, NB E3B 5H1
Tel: 506-453-2260
Toll Free in NB: 1-855-453-2260
www.gnb.ca

Prince Edward Island:
Apprenticeship, Training and Certification
Workforce and Advanced Learning
176 Great George St., PO Box 2000
Charlottetown, PE C1A 7N8
Tel: 902-368-4460
www.apprenticeship.pe.ca

Newfoundland and Labrador:
Apprenticeship and Trades Certification
Advanced Education and Skills
Confederation Building, West Block
Prince Philip Dr., PO Box 8700
St. John’s, NL A1B 4J6
Toll Free: 877-771-3737
www.aes.gov.nl.ca/app

Nova Scotia:
Nova Scotia Apprenticeship Agency
1256 Barrington Street, PO Box 578
Halifax, NS B3J 2S9
Tel: 902-424-5651
Toll Free in NS: 1-800-494-5651
www.nsapprenticeship.ca

Any comments or suggestions received will be reviewed and considered to determine the course of action required. If the changes are deemed to be minor, they will be held for implementation during the next review cycle. If immediate change is deemed appropriate and approved by the Atlantic Trade Advisory Committee, it will result in a revision to this version of the AACS and will be detailed in the following section.

Version Changes

<table>
<thead>
<tr>
<th>Revision Date</th>
<th>Affected Section</th>
<th>Description of Change</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

167